PAPER 30

CYCLOTOMIC FIELDS

Attempt ALL questions.
There are $\boldsymbol{F O U R}$ questions in total.
The questions carry equal weight.

Notation: Throughout, p will denote an odd prime, and \mathbb{Z}_{p} the ring of p-adic integers. For any ring A, A^{*} will denote the multiplicative group of units of A. Let $R=\mathbb{Z}_{p}[[T]]$ be the ring of formal power series in an indeterminate T with coefficients in \mathbb{Z}_{p}. Finally, $\phi: R \rightarrow R$ will be the ring homomorphism defined by $\phi(f)(T)=f\left((1+T)^{p}-1\right)$.

STATIONERY REQUIREMENTS
Cover sheet
Treasury Tag
Script paper

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1 Prove that there exists a unique \mathbb{Z}_{p} linear map $S: R \rightarrow R$ such that, for all f in R,

$$
(\phi \circ S)(f)=\frac{1}{p} \sum_{\zeta \in \mu_{p}} f(\zeta(1+T)-1)
$$

where μ_{p} denotes the group of p-th roots of unity. Prove that S is a left inverse of ϕ, i.e. $S \circ \phi$ is the identity map of R.

2 Define the Coleman norm map $N: R^{*} \rightarrow R^{*}$. If $f(T)$ in R satisfies

$$
\phi(f)(T) \equiv 1 \bmod p^{k} R
$$

for some integer $k \geqslant 1$, prove that $f(T) \equiv 1 \bmod p^{k} R$. Hence show that if f is any element of R^{*} with $N(f)=f$ and $f \equiv 1 \bmod p R$, then necessarily $f=1$. Let A denote the ring of formal power series in T with coefficients in $\mathbb{F}_{p}=\mathbb{Z} / p \mathbb{Z}$, and let W be the subgroup of R^{*} consisting of all units f such that $N f=f$. Deduce that A is naturally isomorphic to the direct product of W and A^{*}.

3 Define the Iwasawa algebra $\Lambda(G)$ of any profinite abelian group G, and explain, without detailed proof, its measure-theoretic interpretation.

State Mahler's theorem on continuous functions on \mathbb{Z}_{p}, and deduce from it a canonical bijection

$$
\lambda: R \rightarrow \Lambda\left(\mathbb{Z}_{p}\right)
$$

If f is any element of R, prove that, for all integers $k \geqslant 0$,

$$
\int_{\mathbb{Z}_{p}} x^{k} d \lambda(f)=\left(D^{k} f\right)(0)
$$

where $D=(1+T) \frac{d}{d T}$.

4 Write an essay outlining the proof of Iwasawa's theorem, explaining briefly how it led him to formulate the main conjecture on cyclotomic fields.

END OF PAPER

