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PAPER 30

CYCLOTOMIC FIELDS

Attempt ALL questions.

There are FOUR questions in total.

The questions carry equal weight.

Notation: Throughout, p will denote an odd prime, and Zp the ring of p-adic
integers. For any ring A, A∗ will denote the multiplicative group of units of A.
Let R = Zp [[T ]] be the ring of formal power series in an indeterminate T with
coefficients in Zp. Finally, φ : R → R will be the ring homomorphism defined by
φ(f)(T ) = f((1 + T )p − 1).
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1 Prove that there exists a unique Zp linear map S : R → R such that, for all f in R,

(φ ◦ S)(f) =
1
p

∑
ζ∈µp

f(ζ(1 + T )− 1) ,

where µp denotes the group of p-th roots of unity. Prove that S is a left inverse of φ, i.e.
S ◦ φ is the identity map of R.

2 Define the Coleman norm map N : R∗ → R∗. If f(T ) in R satisfies

φ(f)(T ) ≡ 1 mod pkR

for some integer k > 1, prove that f(T ) ≡ 1 mod pkR. Hence show that if f is any element
of R∗ with N(f) = f and f ≡ 1 mod pR, then necessarily f = 1. Let A denote the ring
of formal power series in T with coefficients in Fp = Z/pZ, and let W be the subgroup of
R∗ consisting of all units f such that Nf = f . Deduce that A is naturally isomorphic to
the direct product of W and A∗.

3 Define the Iwasawa algebra Λ(G) of any profinite abelian group G, and explain,
without detailed proof, its measure-theoretic interpretation.

State Mahler’s theorem on continuous functions on Zp, and deduce from it a
canonical bijection

λ : R → Λ(Zp) .

If f is any element of R, prove that, for all integers k > 0,∫
Zp

xkdλ(f) = (Dkf)(0)

where D = (1 + T ) d
dT .

4 Write an essay outlining the proof of Iwasawa’s theorem, explaining briefly how it
led him to formulate the main conjecture on cyclotomic fields.
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