MATHEMATICAL TRIPOS Part III

Tuesday 14 June, 2005 9 to 12

PAPER 30

CYCLOTOMIC FIELDS

Attempt **ALL** questions.

There are **FOUR** questions in total. The questions carry equal weight.

Notation: Throughout, p will denote an odd prime, and \mathbb{Z}_p the ring of p-adic integers. For any ring A, A^{*} will denote the multiplicative group of units of A. Let $R = \mathbb{Z}_p[[T]]$ be the ring of formal power series in an indeterminate T with coefficients in \mathbb{Z}_p . Finally, $\phi : R \to R$ will be the ring homomorphism defined by $\phi(f)(T) = f((1+T)^p - 1).$

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. $\mathbf{2}$

1 Prove that there exists a unique \mathbb{Z}_p linear map $S: R \to R$ such that, for all f in R,

$$(\phi \circ S)(f) = \frac{1}{p} \sum_{\zeta \in \mu_p} f(\zeta(1+T) - 1),$$

where μ_p denotes the group of *p*-th roots of unity. Prove that *S* is a left inverse of ϕ , i.e. $S \circ \phi$ is the identity map of *R*.

2 Define the Coleman norm map $N : R^* \to R^*$. If f(T) in R satisfies

$$\phi(f)(T) \equiv 1 \mod p^k R$$

for some integer $k \ge 1$, prove that $f(T) \equiv 1 \mod p^k R$. Hence show that if f is any element of R^* with N(f) = f and $f \equiv 1 \mod pR$, then necessarily f = 1. Let A denote the ring of formal power series in T with coefficients in $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$, and let W be the subgroup of R^* consisting of all units f such that Nf = f. Deduce that A is naturally isomorphic to the direct product of W and A^* .

3 Define the Iwasawa algebra $\Lambda(G)$ of any profinite abelian group G, and explain, without detailed proof, its measure-theoretic interpretation.

State Mahler's theorem on continuous functions on \mathbb{Z}_p , and deduce from it a canonical bijection

$$\lambda: R \to \Lambda(\mathbb{Z}_p).$$

If f is any element of R, prove that, for all integers $k \ge 0$,

$$\int_{\mathbb{Z}_p} x^k d\lambda(f) = (D^k f)(0)$$

where $D = (1+T)\frac{d}{dT}$.

4 Write an essay outlining the proof of Iwasawa's theorem, explaining briefly how it led him to formulate the main conjecture on cyclotomic fields.

END OF PAPER

Paper 30