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1 The universe today appears to be well-approximated by a flat FRW universe
containing radiation, matter, and a cosmological constant.

(a) Show that Friedmann’s equation may be written

a′
2 = H2

0

(
Ωr + Ωma+ ΩΛa

4
)
, (∗)

where a(t) is the scale factor normalised to unity today, and prime denotes derivative
with respect to conformal time τ =

∫ t
0
dt/a(t). Explain the physical significance of the

parameters H0,Ωr,Ωm, and ΩΛ. What are the approximate observed values for these
parameters today? [From CMB observations, we have Ωr = 0.42× 10−4 h−2]

(b) Consider the regime of small a� (Ωm/ΩΛ)
1
3 , in which the ΩΛ term in (*) can

be neglected. Show, by using (*) to represent τ as an integral over a, or otherwise, that

τ ≈ 2H−1
0 Ω−1

m

(√
Ωr + Ωma−

√
Ωr
)
, a� (Ωm/ΩΛ)

1
3 .

Show that in the same approximation, the conformal time at equal matter and radiation
density

τeq = 2H−1
0 Ω−1

m Ω
1
2
r (
√

2− 1).

Explain why this represents the comoving horizon scale at that time and estimate this
comoving scale in Megaparsecs. [You may use H−1

0 ≈ 3000h−1 Mpc.]

(c) For a � Ωr/Ωm, the Ωr term is negligible in (*). Use this to show that the
conformal time today,

τ0 ≈ H−1
0 Ω−

1
3

m Ω−
1
6

Λ

∫ (ΩΛ/Ωm)1/3

0

dy√
y(1 + y3)

.

(d) If ΩΛ/Ωm � 1, the integral can be approximated by

I =
∫ ∞

0

dy√
y(1 + y3)

.

Show that in this approximation, and assuming τeq � τ0, the angle subtended today by
the comoving horizon scale at equal matter and radiation density,

θ ≈ 2I−1(
√

2− 1)Ω
1
2
r Ω

1
6
ΛΩ−

2
3

m .
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2 The general relativistic action for a scalar field φ is given by

SM =
∫
d4x
√
−g
(
−1

2
gµν∂µφ∂νφ− V (φ)

)
.

(a) Show that the stress-energy tensor, Tµν = (2/
√
−g)(δSM/δgµν), is given by

Tµν = ∂µφ∂νφ− gµν
(1

2
gαβ∂αφ∂βφ+ V (φ)

)
.

(b) Consider a flat FRW universe, ds2 = −dt2 + a(t)2d~x2. Show that the energy
density T 00 = 1

2 φ̇
2 + 1

2a
−2(∇φ)2 +V (φ), the momentum density T 0i = −a−2φ̇∂iφ and the

spatial stress T ij = a−4∂iφ∂jφ+ δija
−2
(

1
2 φ̇

2 − 1
2a
−2(∇φ)2 − V (φ)

)
.

(c) Show that the equation of motion of the scalar field is

φ̈+ 3
ȧ

a
φ̇− a−2~∇2φ = −∂V

∂φ
.

(d) If the scalar field is spatially homogeneous, explain why the stress-energy tensor
becomes spatially isotropic and so we can write T ij = Pa−2δij . Show how covariant
stress-energy conservation then reduces to ρ̇ = −3 ȧa (P + ρ), where ρ = T 00. [ You may
use Γ0

ij = δijaȧ and Γi0j = ȧ
aδij , with all other components of the Christoffel symbol being

zero.]

(e) Show that a spatially homogeneous free scalar field, with V (φ) = 0, behaves
like a perfect fluid with P = ρ. Show that a(t) ∝ t1/3 for a universe dominated by such a
field.
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3 For cosmological nucleosynthesis,

(i) Explain why the rate of the weak interactions which convert protons to neutrons
and vice versa is given, up to a numerical factor, by G2

FT
5. [The Fermi constant

GF = (
√

2g2)/(8M2
W ) ≈ 1.17 × 10−5GeV −2, where g is the weak SU(2) coupling and

MW is the mass of the W-boson.]

(ii) Show that the weak interactions freeze out at a temperature approximately
given by

TF ∼ G−2/3
F N

1
6
effM

−1/3
Pl ,

where MPl = 1/
√

8πG and Neff is the effective number of relativistic degrees of freedom,
Neff = Nbose + 7

8Nfermi.

(iii) What is Neff at these epochs, when photons as well as electrons, neutrinos and
their antiparticles are relevant? (You should assume three relativistic neutrino species.)
Estimate TF , assuming it to be greater than the electron mass. How does Neff change as
the universe cools through e± annihilation, and what is the relation between the photon
and neutrino temperatures after this event?

(iv) How does the neutron/proton ratio at weak interaction freeze-out depend on
TF ? [The neutron-proton mass difference is Q = 1.29 MeV, and you may assume the
chemical potentials µn and µp are negligible.]

(v) In thermal equilibrium the mass fraction of a nuclear species of mass number
A and proton number Z is proportional to

ηA−1XZ
p X

A−Z
n eBA/T ,

where Xp and Xn are the proton and neutron mass fractions, η = nB/nγ is the baryon-
to-photon ratio and BA is the binding energy of the species concerned.

Explain the effect on the final 4He mass fraction of

(a) increasing the number of neutrino species,

(b) increasing the neutron half-life τ1/2(n),

(c) increasing η.
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4 Consider a flat FRW universe containing cold dark matter (CDM) and radiation.
The fractional density perturbations in the CDM and the radiation are expanded in Fourier
modes: δC(x) =

∑
k δC,ke

ik.x, and similarly for δR(x), with each Fourier mode obeying

δ′′C,k +
a′

a
δ′C,k = 4πGa2(ρCδC,k + 2ρRδR,k), (1)

where primes denote conformal time derivatives, ρC and ρR are the background CDM and
radiation densities.

For adiabatic perturbations, while a perturbation mode with wavenumber k is still
outside the horizon, kτ � 1, the relation δR,k ≈ 4

3δC,k holds.

(a) Show that in both the radiation-dominated era, with a ∝ τ , and the matter-
dominated era, with a ∝ τ2, there is a super-horizon growing mode solution δC,k ∝ τ2.

(b) When kτ grows larger than unity, the mode crosses the horizon. In the
radiation-dominated era, δR,k then starts to oscillate about zero and its contribution to
the right hand side of (1) may thereafter be neglected. Show that for such a mode, after
horizon crossing but still in the radiation era, δC,k has a growing solution proportional to
ln(τ).

(c) Once the universe enters the matter-dominated era, the ρR term in (1) may be
neglected. Show that in this era, δC,k grows as τ2 for all k.

(d) The Harrison-Peebles-Z’eldovich (HPZ) spectrum is defined by the initial
conditions

〈|δC,k|2〉 ∼ Cτ4k, kτ < 1,

early in the radiation epoch. The fractional mass perturbation (δM/M)k in a sphere of
radius ∼ k−1 has a variance given approximately by 〈(δM/M)2

k〉 ∼ k3〈|δC,k|2〉. Show that
for the Harrison-Peebles-Z’eldovich spectrum, 〈(δM/M)2

k〉 is approximately constant at
horizon crossing.

(e) Show that in the matter era, the HPZ spectrum retains the same shape for
kτeq < 1, but for larger k bends over to

〈|δC,k|2〉 ∼ C(
τ

τeq
)4k−3 (ln(kτeq))

2
, kτeq � 1,

where τeq is the conformal time at equal matter and radiation densities. Explain this bend
in the spectrum around k ∼ τ−1

eq in terms of the growth behaviour computed above, and
estimate 〈(δM/M)2

k〉 for kτeq > 1. Hence estimate the magnitude of the constant C which
is required in order that perturbations on comoving scales of a few Megaparsecs reach
(δM/M)2

k of order unity by today.
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