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1 (a) Explain the origin of the luminosity-distance relation between the measured flux or
apparent luminosity F of an object in an expanding universe and its redshift z:

F =
L

4πa2
0r

2(1 + z)2
,

where L is the absolute luminosity, a0 = a(t0) is the scalefactor today (t=t0) and r is the
radial coordinate in the ‘astronomers’ FRW metric. In particular, define the luminosity
distance dL of the object.

(b) In an open matter-dominated universe (k < 1, P = 0), show that the curvature is
given by

−k = a2
0H

2
0 (1− Ω0) ,

where the relative matter density fraction today is Ω0 ≡ ΩM0 = 8πGρM(t0)/3H2
0 , with

matter density ρM(t) and Hubble parameter today H0.

Determine that the proper distance dS to an object at radial coordinate r and at
the same cosmic time t is given today by

dS = H−1
0 (1− Ω0)−1/2 sinh−1

[
a0H0(1− Ω0)1/2r

]
. (†)

(c) By considering radial photon propagation, show that the proper distance dS (in
the same open matter-dominated universe) can be re-expressed in terms of the redshift z
as

dS = a0

∫ z

0

dz′

H(z′)
= H−1

0

∫ z

0

dz′

(1 + z′)(1 + Ω0z′)1/2
. (∗)

Hence, or otherwise, show that the radial coordinate r is related to the redshift z by

r = 2(a0H0)−1 Ω0z + (2− Ω0)[1− (1 + Ω0)1/2]
Ω2

0(1 + z)
.

Find the limiting value of r at large redshift z � Ω−1.

[Hint: Consider the substitution u2 = (1− Ω0)/[Ω0(1 + z)] and apply the relations
sinh(A − B) = sinhA coshB − coshA sinhB and cosh(A − B) = cosh A coshB −
sinhA sinhB as appropriate.]
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2 Consider a model with a new fermion Y which has a tunable mass mY (two spin
states gY = 2 and chemical potential µY = 0). It couples to a gauge boson which acquires
its mass through a Higgs mechanism at a GUT-scale temperature Tc. For T < Tc, the
interaction rate is given by Γint = G2

Y T 5 with GY = α2
Y /m2

Y and αY ≈ 10−3.

(a) Find the non-relativistic threshold mass mY nr at which the tunable fermion mass
mY and the decoupling temperature TD become equal TD ≈ mY. (You may assume that
for TD > 103GeV, we have the effective spin degrees of freedom N ≈ 102.) Hence, find
the “freeze-out” fermion number-to-entropy density ratio for masses mY <<mY nr,

nY

s
≈ 10−3

(
mY nr

mY

)1/2

exp
[
−(mY nr/mY )1/3

]
.

(b) Roughly estimate the baryon number-to-entropy ratio nB/s given the following
information: We live in a flat (Ω = 1) matter-dominated universe, the relative baryon
density today is ΩB0 ≈ 0.1, the age of the universe is t0 ≈ 10 Gyr ≈ 1043GeV−1, the CMB
temperature is Tγ = 3K = 10−13GeV, the baryon mass is mB ≈ 1 GeV and there are
three neutrino species (with Tν ≈ (4/11)1/3Tγ).

By comparing nB/s with nY /s, estimate the range of masses mY for which this
new fermion is compatible with the standard cosmology.

(c) A typical massless gauge boson coupling above the GUT-scale critical temperature
T > Tc is Γint = α2

Y T . Discuss the maintenance of thermal equilibrium in this case T > Tc

and its implications for the initial particle distribution of the Y -fermion.
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3 Consider a flat (k = 0) FRW universe filled with a non-relativistic matter density
ρM (with PM = 0) and a relativistic ‘dark energy’ density ρQ satisfying an equation of
state PQ = −ρQ/3.

(a) Show that the density in ‘dark energy’ behaves as

ρQ =
3H2

0 (1− ΩM0)
8πG a2

,

where at present t = t0 we have the Hubble parameter H0, the fractional density in matter
ΩM0 = 8πGρM(t0)/3H2

0 and the scalefactor is normalized to unity a0 = 1.

(b) Use the Friedmann and Raychaudhuri equations to show that

2H′ +H2 − β2 = 0 ,

where β ≡ H0(1 − ΩM0)1/2 and H is the conformal Hubble parameter H = a′/a with
primes denoting derivatives with respect to conformal time τ (dτ = dt/a).

(c) Hence, or otherwise, find the parametric solution for the scalefactor a and physical
time t:

a(τ) =
ΩM0

2(1− ΩM0)
[coshβτ − 1] ,

t(τ) =
H−1

0

2
ΩM0

(1− ΩM0)3/2
[sinhβτ − βτ ] .

(d) Find an expression for the age of this universe t0 in terms of ΩM0 and H0 and show
that it always satisfies

2
3H−1

0 ≤ t0 ≤ H−1
0 .

[Hint: You may wish to use the expansion sinh−1 x = x− 1
6x3 + ... for |x| < 1.]
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4 Consider an almost FRW universe with a scalar field φ obeying the following
evolution equations (

ȧ

a

)2

+
k

a2
=

8π

3m2
pl

[
1
2 φ̇2 + 1

2 (∇φ)2 + V (φ)
]

,

φ̈ + 3
ȧ

a
φ̇− 1

a2
∆φ = −dV

dφ
,

where V (φ) is the scalar field potential and ∆ is the spatial Laplacian.

(a) Discuss the conditions necessary for the universe to enter an extended period of
inflationary growth.

(b) Apply these conditions (including the slow-roll approximation) for the exponential
potential, V (φ) = m4

pl exp (−Aφ/mpl) , to find the power law inflationary solutions,

φ(t) =
2mpl

A
ln

( A4V0

96πm2
pl

)1/2

(t + b)

 ,

a(t)
a(ti)

=
(

t + b

ti + b

)16π/A2

= exp
(

8π

Ampl
[φ(t)− φ(ti)]

)
,

(†)

where ti and b are constants.

(c) Briefly explain why the model (†) faces a serious reheating problem. Assume,
instead, that an additional mechanism operates to end inflation at φR ≈ 30mpl/A and
to reheat the universe almost instantaneously; estimate the reheat temperature of the
universe TR (assume that the effective spin degrees of freedom N ≈ 103). In this case
what is the minimum initial value φ(ti) required to solve the flatness problem?
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5 In a flat FRW universe (Ω = 1), in synchronous gauge (specifying metric pertur-
bations with h0µ = 0), the perturbations of a multicomponent fluid obey the following
evolution equations

δ′N + (1 + wN )ik · vN − 1
2 (1 + wN )h′ = 0 ,

v′
N + (1− 3wN )

a′

a
vN +

wN

1 + wN
ikδN = 0 ,

h′′ +
a′

a
h′ − 3

(
a′

a

)2∑
N

(1 + 3wN )ΩNδN = 0 ,

where δN is the density perturbation, ΩN is the fractional density, vN is the velocity
and PN = wNρN is the equation of state of the Nth fluid component, and k is the
comoving wavevector (k = |k|), h is the trace of the metric perturbation and primes
denote differentiation with respect to conformal time τ (dτ = dt/a).

(a) Consider a universe filled with cold dark matter (PC = 0) and baryons with
PB = c2

sρB (cs � 1) at late times in the matter-dominated era so that ΩC + ΩB ≈ 1.
By considering a frame comoving with the cold dark matter and by making appropriate
approximations, show that the above evolution equations can be reduced to

δ′′C +
a′

a
δ′C −

3
2

(
a′

a

)2

(ΩCδC + ΩBδB) = 0 ,

δ′′B +
a′

a
δ′B −

[
3
2

(
a′

a

)2

(ΩCδC + ΩBδB)− c2
sk

2δB

]
= 0 ,

(b) For a small baryon density (ΩB � ΩC) and initially adiabatic perturbations, show
that baryonic structures can only grow on physical wavelengths greater than,

λJ ≈ cs

(
π

Gρ̄C

)1/2

,

where ρ̄C is the homogeneous cold dark matter density. Qualitatively describe the
evolution of large-scale baryonic perturbations in the matter era (t > teq), given that
cs ≈ O(1/

√
3) prior to photon decoupling (t < tdec) and cs ≈ 10−5(T/Tdec) afterwards

(t > tdec). For zdec ≈ 1000 and ΩB ≈ 0.1Ωc, roughly estimate the baryonic Jeans mass in
solar masses just before decoupling and just after decoupling. [You may use t0 ≈ 3×1018s,
c = 3× 1010cm s−1, Msun ≈ 1033g and G = 10−7cm3g−1s−2.]
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6 Consider the evolution equation for a scalar field φ in a flat (k = 0) FRW
background,

φ̈ + 3Hφ̇−∇2φ = −dV

dφ
, (∗)

where V (φ) is the potential and the Hubble parameter H = ȧ/a.

(a) Perturb eqn (∗) about a homogeneous field φ(x, t) = φ(t) + δφ(x, t) to find the
appropriate perturbation equation satisfied by δφ(x, t); Fourier expand as δφ(x, t) =∑

k δφk(t) exp(ik · x) where k is the comoving wavevector (k = |k|). (You may ignore
any metric fluctuations.)

(b) Discuss the quantization of these fluctuations δφk(t) in a large box of sidelength L

expanding in annihilation and creation operators as δφk(t) = wk(t)ak + w∗
k(t)a†k, which

satisfy appropriate commutation relations. In a nearly de Sitter background (a ∝ exp(Ht),
H ≈const.), verify that the appropriate solution for the mode functions is given by

ωk(t) = L−3/2 H

(2k3)1/2

(
i +

k

aH

)
exp

(
ik

aH

)
. (‡)

(c) In the small-scale limit (k � aH), demonstrate explicitly the reduction of (‡) to
the flat space result for a harmonic oscillator. On large scales after horizon exit (k � aH),
show that the perturbations ‘freeze’ and explain why the variance (∆φ)2|k is scale-free.
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7 Scalar metric perturbations in the synchronous gauge h0µ = 0, can be decomposed
into two components h and hS in Fourier space as

hij = 1
3δijh + (k̂ik̂j − 1

3δij)hS ,

where the normalized wavevector k̂ = k/|k. In the conformal Newtonian gauge, we can
express the scalar metric perturbations in terms of two potentials Φ, Ψ as

ds2 = a2(τ)
[
(1 + 2Φ)dτ2 − (1− 2Ψ)δijdxidxj

]
.

(a) Consider gauge transformations, Fourier expanded as

τ̃ = τ +
∑

k

Tk(τ)eik·x , x̃ = x +
∑

k

Lk(τ)ik̂eik·x ,

to show that we can move from the synchronous gauge to the Newtonian gauge using

Tk =
h′

S

2k2
, Lk =

hS

2k
.

Give the potentials Φ and Ψ explicitly in terms of h and hS and their derivatives.

(b) You are also given that photon density and velocities in the Newtonian gauge are
related to their synchronous gauge counterparts by [do not derive these]

δN
γ = δγ + 2

a′

a

h′
S

k2
, vN

γ = vγ + ik
h′

S

2k2
,

and you may assume that there are no anisotropic stresses Φ = Ψ. Use these results and
those derived in (a) to show that scalar CMB temperature fluctuations in the direction n̂
in synchronous gauge,

∆T

T
(n̂) = 1

4δγ + vγ · n̂ + 1
2

∫ τ0

τdec

dτ
∑

k

eik·n̂τ

[
1
3
(h′ − h′

S)− (k̂ · n̂)2h′
S

]
,

can be re-expressed in Newtonian gauge as

∆T

T
(n̂) = 1

4δN
γ + vN

γ · n̂ + Φ + 2
∫ τ0

τdec

Φ′dτ . (†)

Briefly explain the physical significance of each of the terms in (†) and the angular scales
on which they are important.
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PART III COSMOLOGY — INFORMATION SHEET

You may make free use of the information on this sheet

The Friedmann-Robertson-Walker line element is

ds2 = dt2 − a2(t)
{

dr2

1− kr2
+ r2(dθ2 + sin2 θ dφ2)

}
.

The Einstein and energy conservation equations can be written as:

Friedmann
(

ȧ

a

)2

=
8πG

3
ρ +

Λ
3
− k

a2
,

Raychaudhuri
ä

a
= −4πG

3
(ρ + 3P ) +

Λ
3

,

Energy conservation ρ̇ + 3
ȧ

a
(ρ + P ) = 0 ,

with dots denoting derivatives with respect to cosmic time t.

Solutions to these equations in a flat FRW universe (k = Λ = 0) are:

Radiation P = ρ/3 : a ∝ t1/2 , ρcrit =
3

32πGt2
,

Matter P ≈ 0 : a ∝ t2/3 , ρcrit =
1

6πGt2
,

with the redshift of the radiation–matter transition at roughly zeq ≈ 104.

For a relativistic particle species (mass m, chemical potential µ) with temperature
T � m,µ, the limiting energy, number and entropy equilibrium distributions yield

Bosons: ρ =
π2

30
gT 4 n =

ζ(3)
π2

gT 3 , s =
2π2

45
gT 3 ,

Fermions: ρ =
7
8

π2

30
gT 4 n =

3
4

ζ(3)
π2

gT 3 , s =
7
8

2π2

45
gT 3 ,

where g is the number of spin degrees of freedom of the particle and ζ(3) ≈ 1.2 .

For a non-relativistic particle species T � m, the limiting particle number density is given
by

n = g

(
mT

2π

)3/2

exp [−(m− µ)/T ] .

We can relate the temperature and the Hubble parameter by

H = 1.66N 1/2 T 2

mpl
,

where N is the number of effective massless degrees of freedom at a temperature T and
the Planck mass mpl = 1.2× 1019GeV.

Paper 71


	Rubric
	1
	2
	3
	4
	5
	6
	7

