

MATHEMATICAL TRIPOS Part III

Wednesday 6 June 2001 9 to 11

PAPER 67

COSMOLOGY

Attempt **THREE** questions. The questions are of equal weight. Candidates may make free use of the information given on the accompanying sheet.

> You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1 Suppose that an FRW universe is filled with bright point sources with a uniform number density n(t) each with a constant absolute luminosity L (i.e. emitting a time-independent power).

(i) By considering the proper volume element $a^{3}(t) ({}^{(3)}g)^{1/2} dr d\theta d\phi$ [see the Information sheet], show that the number of sources dN observed today at t_{0} whose light was emitted between t - dt and t is

$$dN = 4\pi a^2(t)r^2(t)n(t)dt.$$

 (ii) Briefly explain the physical origin of the main terms in the apparent luminosity formula

$$F = \frac{L}{4\pi d_L^2} = \frac{L}{4\pi a^2 (t_0) r^2 (1+z)^2}$$

where d_L is the luminosity distance. Calculate the total power observed today from all the uniform sources (described above) in a flat matter-dominated universe $(k = \Lambda = 0)$ with the solution $a = (t/t_0)^{2/3}$.

(iii) A matter-dominated open universe $(k < 0, \Lambda = 0)$ has the parametric solution [Do not derive this result]

$$a(\tau) = \frac{\Omega_0}{2(1-\Omega_0)} [\cosh\sqrt{-k\tau} - 1], \quad t(\tau) = \frac{H_0^{-1}}{2} \frac{\Omega_0}{(1-\Omega_o)^{\frac{3}{2}}} [\sinh\sqrt{-k\tau} - \sqrt{-k\tau}],$$

where $-k = H_0^2(1 - \Omega_0)$ with the Hubble parameter today H_0 and the relative matter density Ω_0 . Find the total power observed today from the uniform sources described above. [Leave your result in parametric form.] Hence, or otherwise, compare the flat universe result with an open universe in the limit $\Omega_0 \to 0$. 3

2 We wish to describe the synthesis of light elements in the early universe using the appropriate results from their equilibrium distributions given on the Information Sheet.

(i) The interaction $\nu_{\rm e} + {\rm n} \leftrightarrow {\rm p} + {\rm e}^-$, has the rate $\Gamma \approx G_{\rm F}^2 T^5$ where the Fermi constant $G_F \approx 10^{-5} m_{\rm p}^{-2}$ and $m_{\rm p} \approx 1 \,{\rm GeV}$. Roughly estimate the decoupling temperature $T_{\rm d}$ for neutrinos $\nu_{\rm e}$ for this interaction, given that the effective number of degrees of freedom \mathcal{N} at that time is $\mathcal{N} = 10.75 \approx (1.5)^6$. Explain why the ratio of relative neutron and proton densities at neutrino decoupling is given simply by

$$\frac{n_{\rm n}}{n_{\rm p}} = \frac{X_{\rm n}}{X_{\rm p}} = \exp(-Q/T_d)\,,$$

where $Q = m_{\rm n} - m_{\rm p}$ and $X_i \equiv n_i/n_B$ with n_B the total baryon number of the universe. (Here, you may assume $\mu_{\rm n} \approx \mu_{\rm p}$ are both negligible.)

(ii) Subsequently, deuterium forms through the interaction $p + n \leftrightarrow D + \gamma$. For the fractional deuterium abundance X_D , find an expression for the ratio

$$\frac{X_{\rm D}}{X_{\rm n}X_{\rm p}}$$

in terms of the binding energy $B_{\rm D} = m_{\rm D} - m_{\rm n} - m_{\rm p}$, the baryon-to-photon ratio $\eta \equiv n_B/n_\gamma$ and the temperature T. (Assume that $g_{\rm D} = 3$.)

(iii) Why is the relative density of deuterium X_D very sensitive to the baryon number of the universe n_B , while the relative mass fraction of helium-4 Y_P is not?

3 Suppose a general FRW universe $(k \neq 0)$ contains matter density $\rho_{\rm M}$, radiation density $\rho_{\rm R}$, and a cosmological constant Λ .

(i) Show that the Friedmann equation [see the Information sheet] can be rewritten as

$$H^{2} = H_{0}^{2} \left[\Omega_{\mathrm{R}_{0}} a^{-4} + \Omega_{\mathrm{M}_{0}} a^{-3} + \Omega_{\Lambda_{0}} + (1 - \Omega_{0}) a^{-2} \right] \,,$$

where H is the Hubble parameter $H = \dot{a}/a$ and the relative density parameters Ω_{M_0} , Ω_{R_0} , Ω_{Λ_0} , and Ω_0 should be defined today at t_0 in terms of ρ_M , ρ_R , Λ and k (with $a(t_0) = 1$).

- (ii) For a $\Lambda = 0$ model, find a solution for the total density parameter Ω as a function of the scalefactor a, given Ω_{M_0} , Ω_{R_0} and Ω_0 today. Hence, briefly explain the flatness problem of the standard cosmology.
- (iii) For an empty open universe $(\Omega_{\rm M} = \Omega_{\rm R} = 0)$ with k < 0 and $\Lambda > 0$, find an appropriately normalised solution for the scalefactor a(t).

Paper 67

[TURN OVER

4

4 In a flat FRW universe filled with cold dark matter (CDM) and radiation, the density perturbations obey the coupled equations [*Do not attempt to derive these*.]

$$\begin{split} \delta_{\rm c}^{\prime\prime} &+ \frac{a^\prime}{a} \delta_{\rm c}^\prime - \frac{3}{2} \left(\frac{a^\prime}{a} \right)^2 \left[\Omega_{\rm c} \delta_{\rm c} + 2 \Omega_{\rm r} \delta_{\rm r} \right] = 0 \,, \\ \delta_{\rm r}^{\prime\prime} &+ \frac{1}{3} k^2 \delta_{\rm r} - \frac{4}{3} \delta_{\rm c}^{\prime\prime} = 0 \,, \end{split}$$

where $\delta_{\rm c}$ and $\delta_{\rm r}$ are the CDM and radiation perturbations respectively, $\Omega_{\rm c}$ and $\Omega_{\rm r}$ are the CDM and fractional densities respectively, $k = |\mathbf{k}|$ is the comoving wavenumber, and primes ' denote derivatives with respect to conformal time τ ($dt = ad\tau$).

- (i) For adiabatic perturbations on superhorizon scales $(k\tau \ll 2\pi)$, the number of photons per CDM particle remains fixed. Explain why this implies $\delta_{\rm r} = \frac{4}{3}\delta_{\rm c}$ in this case?
- (ii) Deep in the matter era (i.e. assume $\Omega_c \approx 1$ and $\tau \gg \tau_{eq}$), show that the general CDM solution takes the approximate form

$$\delta_{\rm c}({f k},\tau) \approx A({f k}) \left(\frac{\tau}{\tau_{\rm i}}\right)^2 + B({f k}) \left(\frac{\tau}{\tau_{\rm i}}\right)^{-3}, \qquad (A,\ B \ {\rm arbitrary})\,,$$

and is valid on both subhorizon and superhorizon scales. Find an approximate form for the subhorizon $(k\tau \gg 2\pi)$ radiation perturbation $\delta_{\rm r}$ in this regime. [You need not match your solution at $k\tau = 2\pi$.] Sketch the behaviour of both $\delta_{\rm c}$ and $\delta_{\rm r}$ as a function of τ as they cross the horizon.

(iii) Deep in the radiation era (i.e. assume $\Omega_{\rm r} \approx 1$ and $\tau \ll \tau_{\rm eq}$), find the general solution for the CDM perturbation $\delta_{\rm c}$ on superhorizon scales and the $\delta_{\rm c}$ solution on subhorizon scales. Clearly state the approximations you make.

5

5 In the comoving synchronous gauge the perturbed FRW metric (k = 0) takes the form,

$$ds^{2} = a^{2}(\tau) \left[d\tau^{2} - (\delta_{ij} - h_{ij}) dx^{i} dx^{j} \right] = dt^{2} - d\mathbf{r}^{2}$$

(i) Consider a photon trajectory in the direction $\hat{\mathbf{n}}$ and show that the velocity variation between two comoving points (separated by a proper distance δr) along the photon trajectory $\delta t \approx \delta r$ is given by

$$\Delta v = \frac{d\,\delta r}{dt} \approx \left[\frac{\dot{a}}{a} - \frac{1}{2}\dot{h}_{ij}\hat{n}_i\hat{n}_j\right]\delta t\,.$$

Thus relate temperature fluctuations in the photon background to time variations in the metric perturbation h_{ij} ,

$$\frac{\delta T}{T} \approx \frac{\delta \nu}{\nu} \approx \frac{1}{2} \int_{t_{\rm dec}}^{t_0} \dot{h}_{ij} \hat{n}_i \hat{n}_j \, dt \,. \tag{\dagger}$$

(ii) In Fourier space, the scalar metric perturbation h_{ij} can be decomposed about the wave vector direction $\hat{\mathbf{k}} = \mathbf{k}/|\mathbf{k}|$ such that the Sachs-Wolfe integral (†) becomes [Do not derive this result.]

$$\frac{\delta T}{T} = \frac{1}{2} \int_{\tau_{\rm dec}}^{\tau_0} d\tau \sum_{\mathbf{k}} e^{i\mathbf{k}\cdot\hat{\mathbf{n}}\tau} \left(\frac{1}{3}h'\delta_{ij} + (\hat{k}_i\hat{k}_j - \frac{1}{3}\delta_{ij})h'_S\right)\hat{n}_i\hat{n}_j ,$$

where $h = h_{ii}$ is the trace, h_S is the anisotropic scalar and τ is conformal time $(dt = ad\tau)$. Given that $h - h_S = 0$ and $h = A\tau^2 k^2$ in the matter era $(\Lambda = 0)$, show that this integral reduces to

$$\frac{\delta T}{T} = -\left[\sum_{\mathbf{k}} i\mathbf{k}\cdot\hat{\mathbf{n}}\,A\tau\,e^{i\mathbf{k}\cdot\hat{\mathbf{n}}\tau}\right]_{\tau_{\rm dec}}^{\tau_0} + \left[\sum_{\mathbf{k}}Ae^{i\mathbf{k}\cdot\hat{\mathbf{n}}\tau}\right]_{\tau_{\rm dec}}^{\tau_0} \;.$$

Briefly discuss the scale-dependence of these temperature fluctuations on large angular scales.