PAPER 67

COSMOLOGY

Attempt THREE questions. The questions are of equal weight.
Candidates may make free use of the information given on the accompanying sheet.

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1 Suppose that an FRW universe is filled with bright point sources with a uniform number density $n(t)$ each with a constant absolute luminosity L (i.e. emitting a timeindependent power).
(i) By considering the proper volume element $a^{3}(t)\left({ }^{(3)} g\right)^{1 / 2} d r d \theta d \phi$ [see the Information sheet], show that the number of sources $d N$ observed today at t_{0} whose light was emitted between $t-d t$ and t is

$$
d N=4 \pi a^{2}(t) r^{2}(t) n(t) d t
$$

(ii) Briefly explain the physical origin of the main terms in the apparent luminosity formula

$$
F=\frac{L}{4 \pi d_{L}^{2}}=\frac{L}{4 \pi a^{2}\left(t_{0}\right) r^{2}(1+z)^{2}},
$$

where d_{L} is the luminosity distance. Calculate the total power observed today from all the uniform sources (described above) in a flat matter-dominated universe $(k=\Lambda=0)$ with the solution $a=\left(t / t_{0}\right)^{2 / 3}$.
(iii) A matter-dominated open universe $(k<0, \Lambda=0)$ has the parametric solution [Do not derive this result]

$$
a(\tau)=\frac{\Omega_{0}}{2\left(1-\Omega_{0}\right)}[\cosh \sqrt{-k} \tau-1], \quad t(\tau)=\frac{H_{0}^{-1}}{2} \frac{\Omega_{0}}{\left(1-\Omega_{0}\right)^{\frac{3}{2}}}[\sinh \sqrt{-k} \tau-\sqrt{-k} \tau],
$$

where $-k=H_{0}^{2}\left(1-\Omega_{0}\right)$ with the Hubble parameter today H_{0} and the relative matter density Ω_{0}. Find the total power observed today from the uniform sources described above. [Leave your result in parametric form.] Hence, or otherwise, compare the flat universe result with an open universe in the limit $\Omega_{0} \rightarrow 0$.

2 We wish to describe the synthesis of light elements in the early universe using the appropriate results from their equilibrium distributions given on the Information Sheet.
(i) The interaction $\nu_{\mathrm{e}}+\mathrm{n} \leftrightarrow \mathrm{p}+\mathrm{e}^{-}$, has the rate $\Gamma \approx G_{\mathrm{F}}^{2} T^{5}$ where the Fermi constant $G_{F} \approx 10^{-5} m_{\mathrm{p}}^{-2}$ and $m_{\mathrm{p}} \approx 1 \mathrm{GeV}$. Roughly estimate the decoupling temperature T_{d} for neutrinos ν_{e} for this interaction, given that the effective number of degrees of freedom \mathcal{N} at that time is $\mathcal{N}=10.75 \approx(1.5)^{6}$. Explain why the ratio of relative neutron and proton densities at neutrino decoupling is given simply by

$$
\frac{n_{\mathrm{n}}}{n_{\mathrm{p}}}=\frac{X_{\mathrm{n}}}{X_{\mathrm{p}}}=\exp \left(-Q / T_{d}\right)
$$

where $Q=m_{\mathrm{n}}-m_{\mathrm{p}}$ and $X_{i} \equiv n_{i} / n_{B}$ with n_{B} the total baryon number of the universe. (Here, you may assume $\mu_{\mathrm{n}} \approx \mu_{\mathrm{p}}$ are both negligible.)
(ii) Subsequently, deuterium forms through the interaction $p+n \leftrightarrow D+\gamma$. For the fractional deuterium abundance X_{D}, find an expression for the ratio

$$
\frac{X_{\mathrm{D}}}{X_{\mathrm{n}} X_{\mathrm{p}}}
$$

in terms of the binding energy $B_{\mathrm{D}}=m_{\mathrm{D}}-m_{\mathrm{n}}-m_{\mathrm{p}}$, the baryon-to-photon ratio $\eta \equiv n_{B} / n_{\gamma}$ and the temperature T. (Assume that $g_{\mathrm{D}}=3$.)
(iii) Why is the relative density of deuterium X_{D} very sensitive to the baryon number of the universe n_{B}, while the relative mass fraction of helium- $4 Y_{P}$ is not?

3 Suppose a general FRW universe $(k \neq 0)$ contains matter density ρ_{M}, radiation density ρ_{R}, and a cosmological constant Λ.
(i) Show that the Friedmann equation [see the Information sheet] can be rewritten as

$$
H^{2}=H_{0}^{2}\left[\Omega_{\mathrm{R}_{0}} a^{-4}+\Omega_{\mathrm{M}_{0}} a^{-3}+\Omega_{\Lambda_{0}}+\left(1-\Omega_{0}\right) a^{-2}\right]
$$

where H is the Hubble parameter $H=\dot{a} / a$ and the relative density parameters $\Omega_{\mathrm{M}_{0}}, \Omega_{\mathrm{R}_{0}}, \Omega_{\Lambda_{0}}$, and Ω_{0} should be defined today at t_{0} in terms of $\rho_{\mathrm{M}}, \rho_{\mathrm{R}}, \Lambda$ and k (with $a\left(t_{0}\right)=1$).
(ii) For a $\Lambda=0$ model, find a solution for the total density parameter Ω as a function of the scalefactor a, given $\Omega_{\mathrm{M}_{0}}, \Omega_{\mathrm{R}_{0}}$ and Ω_{0} today. Hence, briefly explain the flatness problem of the standard cosmology.
(iii) For an empty open universe $\left(\Omega_{\mathrm{M}}=\Omega_{\mathrm{R}}=0\right)$ with $k<0$ and $\Lambda>0$, find an appropriately normalised solution for the scalefactor $a(t)$.

4 In a flat FRW universe filled with cold dark matter (CDM) and radiation, the density perturbations obey the coupled equations [Do not attempt to derive these.]

$$
\begin{aligned}
\delta_{\mathrm{c}}^{\prime \prime}+\frac{a^{\prime}}{a} \delta_{\mathrm{c}}^{\prime}-\frac{3}{2}\left(\frac{a^{\prime}}{a}\right)^{2}\left[\Omega_{\mathrm{c}} \delta_{\mathrm{c}}+2 \Omega_{\mathrm{r}} \delta_{\mathrm{r}}\right] & =0, \\
\delta_{\mathrm{r}}^{\prime \prime}+\frac{1}{3} k^{2} \delta_{\mathrm{r}}-\frac{4}{3} \delta_{\mathrm{c}}^{\prime \prime} & =0,
\end{aligned}
$$

where δ_{c} and δ_{r} are the CDM and radiation perturbations respectively, Ω_{c} and Ω_{r} are the CDM and fractional densities respectively, $k=|\mathbf{k}|$ is the comoving wavenumber, and primes ' denote derivatives with respect to conformal time $\tau(d t=a d \tau)$.
(i) For adiabatic perturbations on superhorizon scales $(k \tau \ll 2 \pi)$, the number of photons per CDM particle remains fixed. Explain why this implies $\delta_{\mathrm{r}}=\frac{4}{3} \delta_{\mathrm{c}}$ in this case?
(ii) Deep in the matter era (i.e. assume $\Omega_{\mathrm{c}} \approx 1$ and $\tau \gg \tau_{\text {eq }}$), show that the general CDM solution takes the approximate form

$$
\delta_{\mathrm{c}}(\mathbf{k}, \tau) \approx A(\mathbf{k})\left(\frac{\tau}{\tau_{\mathrm{i}}}\right)^{2}+B(\mathbf{k})\left(\frac{\tau}{\tau_{\mathrm{i}}}\right)^{-3}, \quad(A, B \text { arbitrary })
$$

and is valid on both subhorizon and superhorizon scales. Find an approximate form for the subhorizon $(k \tau \gg 2 \pi)$ radiation perturbation δ_{r} in this regime. [You need not match your solution at $k \tau=2 \pi$.] Sketch the behaviour of both δ_{c} and δ_{r} as a function of τ as they cross the horizon.
(iii) Deep in the radiation era (i.e. assume $\Omega_{\mathrm{r}} \approx 1$ and $\tau \ll \tau_{\text {eq }}$), find the general solution for the CDM perturbation δ_{c} on superhorizon scales and the δ_{c} solution on subhorizon scales. Clearly state the approximations you make.

5 In the comoving synchronous gauge the perturbed FRW metric $(k=0)$ takes the form,

$$
d s^{2}=a^{2}(\tau)\left[d \tau^{2}-\left(\delta_{i j}-h_{i j}\right) d x^{i} d x^{j}\right]=d t^{2}-d \mathbf{r}^{2}
$$

(i) Consider a photon trajectory in the direction $\hat{\mathbf{n}}$ and show that the velocity variation between two comoving points (separated by a proper distance δr) along the photon trajectory $\delta t \approx \delta r$ is given by

$$
\Delta v=\frac{d \delta r}{d t} \approx\left[\frac{\dot{a}}{a}-\frac{1}{2} \dot{h}_{i j} \hat{n}_{i} \hat{n}_{j}\right] \delta t
$$

Thus relate temperature fluctuations in the photon background to time variations in the metric perturbation $h_{i j}$,

$$
\frac{\delta T}{T} \approx \frac{\delta \nu}{\nu} \approx \frac{1}{2} \int_{t_{\mathrm{dec}}}^{t_{0}} \dot{h}_{i j} \hat{n}_{i} \hat{n}_{j} d t
$$

(ii) In Fourier space, the scalar metric perturbation $h_{i j}$ can be decomposed about the wave vector direction $\hat{\mathbf{k}}=\mathbf{k} /|\mathbf{k}|$ such that the Sachs-Wolfe integral (\dagger) becomes [Do not derive this result.]

$$
\frac{\delta T}{T}=\frac{1}{2} \int_{\tau_{\mathrm{dec}}}^{\tau_{0}} d \tau \sum_{\mathbf{k}} e^{i \mathbf{k} \cdot \hat{\mathbf{n}} \tau}\left(\frac{1}{3} h^{\prime} \delta_{i j}+\left(\hat{k}_{i} \hat{k}_{j}-\frac{1}{3} \delta_{i j}\right) h_{S}^{\prime}\right) \hat{n}_{i} \hat{n}_{j}
$$

where $h=h_{i i}$ is the trace, h_{S} is the anisotropic scalar and τ is conformal time $(d t=a d \tau)$. Given that $h-h_{S}=0$ and $h=A \tau^{2} k^{2}$ in the matter era $(\Lambda=0)$, show that this integral reduces to

$$
\frac{\delta T}{T}=-\left[\sum_{\mathbf{k}} i \mathbf{k} \cdot \hat{\mathbf{n}} A \tau e^{i \mathbf{k} \cdot \hat{\mathbf{n}} \tau}\right]_{\tau_{\mathrm{dec}}}^{\tau_{0}}+\left[\sum_{\mathbf{k}} A e^{i \mathbf{k} \cdot \hat{\mathbf{n}} \tau}\right]_{\tau_{\mathrm{dec}}}^{\tau_{0}}
$$

Briefly discuss the scale-dependence of these temperature fluctuations on large angular scales.

