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1 Controllability and Interaction Picture.

(a) Briefly explain in about one sentence each the general meaning of the notions of reachable
sets and controllability in control theory, and explain how these notions can be applied to
(Hamiltonian) quantum control systems, e.g., in the context of quantum state or process
engineering.

(b) Consider the bilinear Hamiltonian control system given by Ĥ[f(t)] = Ĥ0 +f(t)Ĥ1, where

Ĥ0 =

−ω1 0 0
0 0 0
0 0 −ω2

 , Ĥ1 =

 0 d1 0
d1 0 d2

0 d2 0

 (1)

and ω1, ω2, d1, d2 ∈ R. Explain briefly whether this system controllable if ωk > 0, dk > 0, for
k = 1, 2 and ω1 6= ω2. You may use theorems from the course without proof but be explicit
about the notion of controllability you are using.

(c) Show that the system considered in part (b) is not controllable (in any sense) if
ω1 = ω2 = ω and d1 = d2 = d. Hint: Show that |−〉 = 1√

2
(|1〉 − |3〉) is a dark state, i.e.,

that |−〉 is an eigenstate of Ĥ[f(t)] for any f(t) and consider what this means for the set of
states reachable from |−〉.

(d) Let Û(t) be the solution of the Schrodinger equation i~ d
dt Û(t) = Ĥ[f(t)]Û(t) with

Û(0) = Î and H[f(t)] = Ĥ0 + f(t)Ĥ1 as above. Show that the interaction picture evolution
operator ÛI(t) = Û0(t)†Û(t) with Û0(t) = exp(−itĤ0/~) satisfies

i~
d

dt
ÛI(t) = f(t)ĤI(t)ÛI with ĤI(t) = Û0(t)†Ĥ1Û0(t). (2)

(e) Assuming Ĥ0 and Ĥ1 as in Eq. (1) and choosing units such that ~ = 1 for convenience,
show that the interaction picture Hamiltonian is

ĤI(t) =

 0 d1e
−iω1t 0

d1e
iω1t 0 d2e

iω2t

0 d2e
−iω2t 0

 . (3)

(f) Assume f(t) = A1(t) cos(ω1t) and ∆ω = ω2 − ω1. Using the interaction picture
Hamiltonian (3), show that

f(t)ĤI =
A1(t)

2

 0 d1 0
d1e

i2ω1t 0 d2e
i(2ω1+∆ω)t

0 d2e
−i∆ωt 0

+

 0 d1e
−i2ω1t 0

d1 0 d2e
i∆ωt

0 d2e
−i(2ω1+∆ω)t 0

 .
(4)

Explain under what assumptions can we simplify

f(t)ĤI ≈
A1(t)d1

2

0 1 0
1 0 0
0 0 0

 . (5)
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2 Geometric and Adiabatic Control.

(a) Let A be an operator in a finite dimensional Hilbert space H satisfying A2 = I, where I
is the identity operator. Show that exp(−iθA) = cos(θ)I − i sin(θ)A for θ ∈ R.

(b) Use the result from part (a) to show that

exp(−iθA) =
(

cos θ −ie−iφ sin θ
−ieiφ sin θ cos θ

)
(6)

for A = cosφ σ̂x + sinφ σ̂y, where φ ∈ R and the Pauli matrices are as usual

σ̂x =
(

0 1
1 0

)
, σ̂y =

(
0 −i
i 0

)
, σ̂z =

(
1 0
0 −1

)
, I =

(
1 0
0 1

)
. (7)

(c) Let Ĥk(φ) = cos(φ)x̂k + sin(φ)ŷk for k = 1, 2, where

x̂1 =

0 1 0
1 0 0
0 0 0

 , ŷ1 =

0 −i 0
i 0 0
0 0 0

 , x̂2 =

0 0 0
0 0 1
0 1 0

 , ŷ2 =

0 0 0
0 0 −i
0 i 0

 .

Using the results from (b) explain why

Û1(t; Ω1, φ1) = exp+

[
− i

~

∫ t

0
Ω1(τ) Ĥ1(φ1) dτ

]
=

 cos θ1(t) −ie−iφ1 sin θ1(t) 0
−ieiφ1 sin θ1(t) cos θ1(t) 0

0 0 1

 (8a)

Û2(t; Ω2, φ2) = exp+

[
− i

~

∫ t

0
Ω2(τ) Ĥ2(φ2) dτ

]
=

1 0 0
0 cos θ2(t) −ie−iφ2 sin θ2(t)
0 −ieiφ2 sin θ2(t) cos θ2(t)

 (8b)

for θk(t) = 1
~
∫ t

0 Ωk(τ) dτ , where exp+ indicates positive time ordering. Explain whether

exp+

[
− i

~

∫ t

0
Ω1(τ) Ĥ1(φ1) + Ω2(τ)Ĥ2(φ2) dτ

]
= exp

[
−iθ1(t)Ĥ1(φ1) + θ2(t)Ĥ2(φ2)

]
(9)

is true or not.

(d) Consider the drift-free bilinear Hamiltonian control system

Ĥ(Ωk, φk) = Ω1(t)Ĥ1(φ1) + Ω2(t)Ĥ2(φ2) (10)

with Ĥk(φk) as defined in (c), where the control variables are the pulse envelopes Ωk(t) and
phases φk for k = 1, 2. Using the expressions (8a) and (8b), explain how we can implement the
following gates

Ŵ1 =

0 −1 0
1 0 0
0 0 1

 , Ŵ2 =

1 0 0
0 0 1
0 −1 0

 , Ŵ4 = −

0 0 1
0 1 0
1 0 0

 (11)

using simple geometric pulses or pulse sequences. If the system is initially in the state the
eigenstate |1〉 ≡ (1, 0, 0)T , how can we transfer the population to the state |3〉 ≡ (0, 0, 1)T using
two simple pulses?

(e) If the pulse phases φ1 = φ2 = 0 then the Hamiltonian in part (d) simplifies

Ĥ(Ωk) = Ĥ(Ωk, φk = 0) =

 0 Ω1(t) 0
Ω1(t) 0 Ω2(t)

0 Ω2(t) 0

 (12)

and we can show that |Ψ(θt)〉 = cos θt|1〉 − sin θt|3〉 with θt = arctan
(

Ω1(t)
Ω2(t)

)
is an eigenstate of

Ĥ(Ωk) with eigenvalue λ0 = 0.
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(i) Explain briefly how we can exploit the fact that |Ψ(θt)〉 is an eigenstate of Ĥ(Ωk) to
adiabatically transfer population from the initial state |1〉 to the target state |3〉 (modulo
global phases) by varying Ω1(t) and Ω2(t).

(ii) Assuming the intermediate level |2〉 is an excited state prone to decay by spontaneous
emission, what is the main advantage of the adiabatic transfer scheme versus the geometric
pulse sequence derived in part (d)?

3 Question 3. Optimal and Adaptive Control

(a) One approach in quantum control is to formulate the control problem as an optimization
problem by choosing an objective functional to be maximized or minimized, and trying to find
a control from a set of admissible controls for which the target functional assumes its minimum
or maximum. Give possible objective functions for the following control problems:

(i) Maximizing expectation value of an observable Â at a target time tF for a pure-state
Hamiltonian system.

(ii) Minimizing the gate error of a (unitary) process ÛT with gate operation time T .

(iii) Steering the system to a target state ρ̂d in time tF .

Briefly justify your choice in each case, and explain the meaning of the symbols you use.

(b) Explain how we can find controls that maximize the objective function experimentally
using adapative open-loop control, assuming we can repeat individual experiments with different
controls and experimentally evaluate the objective function. You may wish to mention several
algorithmic approaches but it suffices to describe one.

(c) If we are dealing with a complex system, for which we do not have an accurate
mathematical model, then direct laboratory optimization using the adaptive/learning control
approach discussed in part (b) is sometimes the only feasible way to find a control. However,
if we have a model for the dynamics of the system, including its free evolution and the effect
of external control fields, then there are more efficient optimization techniques. Describe one
approach based on a variational formulation and numerical solution of the Euler-Lagrange
equations.

(d) Suppose, using the technique in part (c), that we have found a complicated temporal
pulse shape f(t) that optimizes our target functional subject to constraints, etc. Sketch one
way such a complex pulse shape could be realized experimentally using spectral pulse shaping.
A sketch of a possible experimental setup and brief explanation will suffice.
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4 Question 4. Feedback control

(a) Let ρ̂(t) and ρ̂d(t) be density operators acting on a finite-dimensional Hilbert space H
satisfying

˙̂ρ(t) = [−i(Ĥ0 + f(t)Ĥ1), ρ̂(t)], ˙̂ρd(t) = [−iĤ0, ρ̂d(t)], (13)

respectively, where Ĥ0 and Ĥ1 are Hermitian operators on H and f(t) is a real-valued function.
Show that the distance of the system state ρ̂(t) from the target state ρ̂d(t) is monotonically
decreasing if we choose f(t) = Tr(ρ̂d(t)ρ̂(t)).

Hint: Show V̇ (t) ≤ 0 for V (ρ̂(t), ρ̂d(t)) = ||ρ̂(t) − ρ̂d(t)||2 where ||x|| =
√

Tr(x†x) is the
Hilbert-Schmidt norm, observing that Tr([−iĤ0, ρ̂d(t)]ρ̂(t)) = −Tr(ρ̂d(t)[−iĤ0, ρ̂(t)]).

(b) The scheme in part (a) essentially provides a feedback control law that steers the system
from some initial state ρ̂(0) to a desired target state ρ̂d(t). Could this feedback law be used for
measurement-based feedback control for quantum systems? If not, why not?

(c) In the standard semi-classical model of quantum control the goal is to control a quantum
system using external fields produced by essentially classical actuators and measurements. An
alternative approach is to replace the classical controller by another quantum system that acts
as a quantum controller. A very simple example of such a system is a cavity that interacts
with a quantized external field. Let b̂0, b̂1 and â be stochastic operators representing the input,
output and cavity mode, respectively. It can be shown that for a simple cavity with cavity
decay rate γ we obtain the following linear control system

d

dt
â(t) = −γ

2
â(t)−√γb̂0(t) (14a)

b̂1(t) =
√
γâ(t) + b̂0(t). (14b)

By taking the Laplace transform of the equations, show that b̃1(s) = G(s)b̃0(s) with gain
function G(s) = s−γ/2

s+γ/2 , where b̃0(s) = L[b̂0(t)](s) and b̃1(s) = L[b̂1(t)](s) are the Laplace

transforms of b̂0(t) and b̂1(t), respectively, and apply Nyquist’s stability criterion to decide if
the cavity-field system is stable.

Hint: The Laplace transform L is linear and satisfies L[ ddta(t)](s) = sL[a(t)](s) assuming
a(0) = 0.

(d) Consider the closed-loop system consisting of a cavity and a beamsplitter as pictured
below. Using the state equations for the cavity (14) from part (c) and the input-output relation
for the beamsplitter

b̂0 = βb̂in − αb̂1 (15a)

b̂2 = αb̂in + βb̂1 (15b)

where α, β real with α2 + β2 = 1, show that

d

dt
â =

γ(α− 1)
2(1 + α)

â−
β
√
γ

1 + α
b̂in (16a)

b̂0 =
β

1 + α
b̂in −

α
√
γ

1 + α
â (16b)

b̂1 =
β

1 + α
b̂in +

√
γ

1 + α
â (16c)

b̂2 = b̂in +
β
√
γ

1 + α
â. (16d)

bo

2

b in 1

b

b

Cavity with feedback via beamsplitter.
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(e) Noting that the transfer function for the closed-loop system in part (d) is M(s) = βG(s)
1+αG(s) ,

where G(s) is the cavity gain function from part (c), show that the closed-loop system is stable
and calculate its steady state as a function of the input b̂in.

END OF PAPER
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