
MATHEMATICAL TRIPOS Part III

Tuesday 12 June 2007 1.30 to 3.30

PAPER 60

CONTROL OF QUANTUM SYSTEMS

Attempt THREE questions.

There are FIVE questions in total.

The questions carry equal weight.

STATIONERY REQUIREMENTS SPECIAL REQUIREMENTS
Cover sheet None
Treasury Tag
Script paper

You may not start to read the questions

printed on the subsequent pages until

instructed to do so by the Invigilator.



2

1 Generalized Bloch vectors. The generalized Bloch vector (also called coherence
vector or Stokes tensor) of a density operator ρ̂ for an N -dimensional system with N > 2
is defined (analogous to the N = 2 case) by sk = Tr[ρ̂σ̂k], k = 1, . . . , N2 − 1, where σ̂k are
the generalized Pauli matrices

σ̂x
rs = (|r〉〈s|+ |s〉〈r|)/

√
2,

σ̂y
rs = i(−|r〉〈s|+ |s〉〈r|)/

√
2

σ̂z
r =

√
1

r+r2

(
r∑

k=1

|k〉〈k| − r|r + 1〉〈r + 1|

)
for 1 ≤ r ≤ N − 1 and r < s ≤ N .

(a) Using Tr[σ̂kσ̂`] = δk`, which you do not need to prove, show that the generalized
Pauli matrices {σ̂k}N2−1

k=1 form an orthonormal basis for the N × N trace-zero
Hermitian matrices, and that {σ̂k}N2−1

k=0 is an orthonormal basis for all N × N
Hermitian matrices. Furthermore, show that the generalized Bloch vectors are
elements in RN2−1.

(b) Show that pure states in CN correspond to points on the sphere SN2−2 of radius√
1− 1/N in this space.

(c) Show that the set of pure states does not cover the sphere SN2−2 for N > 2.

(d) Show that non-pure states lie in the interior of the sphere SN2−2 (of radius√
1− 1/N) for N ≥ 2.

(e) Show that Hamiltonian evolution of a general quantum ensemble corresponds to a
rotation of the generalized Bloch vector.

In the presence of dissipation the generalized Bloch vector satisfies a dissipative Bloch
equation ṡ(t) = As + c, and for N = 2 we have explicitly

A =

 −Γ −αz αy

αz −Γ −αx

−αy αx −(γ12 + γ21)

 , c =

 0
0

γ21 − γ12

 ,

where αk for k = x, y, z are control parameters and Γ, γ12, γ21 relaxation parameters.

(f) What type of relaxation does each of the relaxation parameters in the dissipative
Bloch equation correspond to? What are the steady states of the system in the
absence of any control fields, i.e. for αx = αy = αz = 0?
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2 Controllability.

(a) Explain briefly what a bilinear Hamiltonian control system is, and give concise gen-
eral definitions of the control-theoretic notions of reachable set and controllability.

(b) Define what a Lie algebra is, and give Lie-algebraic criteria for the notions of pure-
state, mixed-state and unitary operator controllability for a bilinear Hamiltonian
control system.

(c) Show that the dynamical Lie group generated by iĤ0 and iĤ1 for a four-level system
governed by the control Hamiltonian Ĥ[f(t)] = Ĥ0 + f(t)Ĥ1 satisfies a sympletic
symmetry with respect to the symmetry operator Ĵ , where (α, β ∈ R)

Ĥ0 =


−α 0 0 0
0 −β 0 0
0 0 β 0
0 0 0 α

 , Ĥ1 =


0 1 0 0
1 0 1 0
0 1 0 −1
0 0 −1 0

 , Ĵ =


0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0

 .

(d) Show that the (unitarily equivalent) states ρ̂0 and ρ̂1 below are not dynamically
equivalent under the action of the Lie group defined in part (c).

ρ̂0 =


a 0 0 0
0 a 0 0
0 0 b 0
0 0 0 b

 , ρ̂1 =


a 0 0 0
0 b 0 0
0 0 b 0
0 0 0 a

 , 0 ≤ a < 1
2 , b = 1

2 − a, b 6= a.

(e) Briefly outline a proof showing that density matrix controllability implies pure state
controllability, and indicate whether the converse is true or not (i) in general and
(ii) for the special case of N = 2.
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3 Geometric control and applications.

(a) If Â is a bounded operator on a Hilbert space such that Â2 = Î, where Î is the
identity matrix, show that exp(−iθÂ) = cos(θ)Î − i sin(θ)Â.

(b) Show that a generic single-qubit quantum gate can be expressed as

Û = exp
[
− iθ

2 (nxσ̂x + nyσ̂y + nzσ̂z)
]
,

where σ̂x =
(

0 1
1 0

)
, σ̂y =

(
0 −i
i 0

)
, σ̂z =

(
1 0
0 −1

)
are the Pauli matrices.

(c) Use the results from part (b) to outline a scheme for implementing single qubit
gates for a qubit subject to the control Hamiltonian H1[B(t)] = Bx(t)σ̂x +By(t)σ̂y.

Next consider two qubits, each with a single qubit Hamiltonian of the form Ĥ1 above, and
Ising coupling, i.e., assume the total Hamiltonian is

H = B(1)
x (t) σ̂x ⊗ Î + B(1)

y (t) σ̂y ⊗ Î + B(2)
x (t) Î ⊗ σ̂x + B(2)

y (t) Î ⊗ σ̂y + HI

and HI = J12 σ̂z ⊗ σ̂z, where the fields B
(k)
x (t), B

(k)
y (t), k = 1, 2 and the inter-qubit

coupling J12 are control inputs.

(d) Suggest a simple scheme to implement a two-qubit phase gate of the form Cphase =
diag(−1, 1, 1,−1).

(e) Explain how you could implement an arbitary two-qubit gate using only Cphase

gates and single qubit x, y or z rotations. (Hint: Use the Cartan decomposition.)

(f) If the inter-qubit coupling J12 is fixed, i.e., cannot be controlled, what problems
will arise? Under what conditions can the coupling be neglected?

4 Control field design. Given a (controllable) system, explain how we can design
control fields to realize a particular control objective using open-loop, model-based control
design techniques. Briefly outline three design strategies in one or two sentences each, and
then explain one technique in detail. You should include relevant equations, algorithms,
etc.

For instance, if you choose variational optimal control, you should include the
variational functional, the Euler-Lagrange equations, sketch an algorithm to solve the
equations, and comment on how the resulting control fields can be implemented using
pulse shaping techniques.
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5 Stochastic feedback control.

(a) Write down the interaction Hamiltonian for a cavity with a quantized field, and
show that the rotating wave approximation (RWA) leads to

ĤI(t) = i
√

γ[â(t)⊗ b̂†(t)− â†(t)⊗ b̂(t)],

where â† is the cavity creation operator, b̂† the creation operator for the external
field, and γ is the cavity-field coupling strength.

(b) Let b̂in(t) and b̂out(t) be stochastic input and output operators, respectively, for the
cavity, and B̂in(t) =

∫ t+dt

t
b̂(τ) dτ . Show that, assuming Markovian dynamics, the

stochastic evolution operator is

ÛI(t + dt, t) = exp
[√

γ[â(t)⊗ B̂†
in(t)− â†(t)⊗ B̂in(t)]

]
.

(c) Using dB̂in(t) dB̂†
in(t) = (N + 1) dt, dB̂in(t)† dB̂(t) = N dt, dB̂in(t) dB̂in(t) = M dt,

dB̂†
in(t) dB̂†

in(t) = M∗ dt, show that the Taylor expansion of ÛI(t + dt, t) gives

1 +
√

γ[â(t)⊗ B̂†
in(t)− â†(t)⊗ B̂in(t)]

−dtγ
2 [Nâ(t)â†(t) + (N + 1)â†(t)â(t)−Mâ†(t)â†(t)−M∗â(t)â(t)]⊗ ÎB + O(γ3/2)

(d) The stochastic evolution equation for a cavity operator ŝ is

ŝ(t) = Û(t + dt, t)†ŝ(t)Û(t + dt, t)− ŝ(t).

Using the expansion for Û(t + dt, t) above, one can show that a cavity operator ŝ
satisfies the following explicit stochastic equation

dŝ =
√

γ[â† ⊗ dB̂in − â⊗ dB̂†
in, ŝ] + γ dt

2 {(N + 1)(2â†ŝâ− ŝâ†â− â†âŝ)

+N(2âŝâ† − ŝââ† − ââ†ŝ) + M [â†, [â†, ŝ]] + M∗[â, [â, ŝ]]} ⊗ ÎB

where the time dependence of the operators has been omitted for clarity. Using
the result above (which you do not need to prove) and the commutation relation
[â, â†] = 1, show that for ŝ = â, we obtain the implicit state equation

˙̂a(t) = −γ
2 â(t)−√

γb̂in(t).

(e) One can furthermore derive the input-output relation b̂out(t) =
√

γâ(t) + b̂in(t).
Using this result (which you do not need to prove) together with the implicit state
equation for the cavity operator â(t) above, show that the transfer function of the
cavity is

b̃out(s) = s−γ/2
s+γ/2 b̃in(s)

where ã(s) and b̃(s) are the Laplace transforms of â(t) and b̂(t).

(f) State the Nyquist stability condition and explain if the open-loop cavity system
satisfies it.

END OF PAPER
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