MATHEMATICAL TRIPOS Part III

Friday 6 June 2008 9.00 to 11.00

Treasury tag Script paper

PAPER 15

COMBINATORIAL PROBABILITY

Attempt the FIRST QUESTION and ANY TWO other questions.

The FIRST QUESTION carries 40% of the marks, and the other questions carry 30% each. Any results you quote should always be stated precisely.

STATIONERY REQUIREMENTS Cover sheet None

> You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1 Let \mathcal{A} be a subset of the *n*-dimensional discrete cube $Q^n = \{0, 1\}^n$. Write $t = |\mathcal{A}|/2^n$ for the probability of \mathcal{A} , and for i = 1, ..., n write β_i for the influence of the *i*th variable on \mathcal{A} .

(i) State the basic identities and inequalities concerning the characteristic function $f = \mathbf{1}_{\mathcal{A}}$, its Fourier coefficients, the influences β_i , and the relevant consequence of the Bonami–Beckner inequality.

(ii) Show that if

$$\sum_{i=1}^n \beta_i^2 < \lambda^2/n$$

for some $\lambda > 0$ then

$$\sum_{A \neq \emptyset} |A| \alpha_A^2 < \lambda/4$$

and for 1 we have

$$\sum_{A \neq \emptyset} |A| \delta^{|A|} \alpha_A^2 < \frac{1}{4} \lambda^{2/p} n^{1-2/p}.$$

(iii) Show that if n is sufficiently large then

$$\sum_{i=1}^{n} \beta_i^2 \ge t^2 (1-t)^2 (\log n)^2 / n$$

[Hint for Part (iii). Set

$$\lambda = t(1-t)\log n, \quad \gamma = 3(\log\log n)/\log n, \quad \delta = 1-\gamma \quad \text{and} \quad p = 1+\delta,$$

and make use of the inequalities in Part (ii). You may find it convenient to consider

$$\sum_{A \neq \emptyset} \alpha_A^2 = \sum_{1 \le |A| < b} \alpha_A^2 + \sum_{|A| > b} \alpha_A^2,$$

where $b = (\log n)/3$.]

2 (i) State the Uniform Cover Inequality for projections of bodies, and deduce from it the Box Theorem.

(ii) Let S_1, \ldots, S_n be non-empty finite sets of integers. For $\emptyset \neq A \subset [n]$ put $S_A = \{\sum_{i \in A} s_i : s_i \in S_i \text{ for every } i \in A\}$, so that $S = S_{[n]}$ is the sum of all n sets and $S_{\{i\}} = S_i$ for every i. Show that there are constants $b_1, \ldots, b_n > 0$ such that

$$|S| = \prod_{i=1}^{n} b_i$$
 and $|S_A| \ge \prod_{i \in A} b_i$ for all $A \subset [n]$.

(iii) Show also that if $|S_i| = 2$ for every *i* and $|S_{\{i,j\}}| = 4$ for all $1 \le i < j \le n$ then $|S| \ge \binom{n+1}{2} + 1$, and that this inequality is best possible for every *n*.

[Hint to Part (iii). Show that you may assume that $S_i = \{0, s_i\}$ and $0 < s_1 < \cdots < s_n$, and enumerate some elements of S that are guaranteed to be different: $0 < s_1 < s_2 < s_1 + s_2 < s_1 + s_3 < \ldots$]

3 (i) State the Balister–Bollobás Inequality and deduce from it the Madiman–Tetali Inequality.

(ii) Let G be a graph on [n] with degree sequence $d_1 \ge d_2 \ge \cdots \ge d_n \ge 1$. For $1 \le i \le n$, write b_i for the number of vertices j < i that are joined to i. Show that G has at most

$$\prod_{i=1}^{n} (2^{b_i+1} - 1)^{1/d_i}$$

independent sets.

(iii) Give an infinite family of examples for which the bound above is attained.

4 (i) Use entropy methods to prove that if the complete graph K_n is the union of ℓ bipartite graphs G_1, \ldots, G_ℓ , then $\sum_{i=1}^{\ell} |G_i| \ge n \log_2 n$, where $|G_i|$ is the order of G_i .

[Hint. Let $\chi_i : V(G_i) \to \{0, 1\}$ be a (proper) two-colouring of G_i . Let X be a vertex of K_n chosen uniformly at random, and for each *i* define a random variable Y_i by setting $Y_i = \chi_i(X)$ if $X \in V(G_i)$, and $Y_i = \chi_i(Z_i)$ if $X \notin V(G_i)$, where Z_i is a random vertex of $V(G_i)$, chosen uniformly and independently of all other choices. Note that $H(X|Y_1, \ldots, Y_\ell) = 0$.]

(ii) A weight w(G) of a graph G is defined as follows. Let Z be a vertex of G chosen uniformly at random, and let $\tilde{\chi}$ be a (proper) colouring of the vertices of G that minimizes the entropy $H(\tilde{\chi}(Z))$. The weight of G is then $w(G) = |G| H(\tilde{\chi}(Z))$. Show that if the complete graph K_n is the union of ℓ graphs G_1, \ldots, G_ℓ then $\sum_{i=1}^{\ell} w(G_i) \ge n \log_2 n$. Justify all the steps in your argument.

[Hint. Let X be a random vertex of K_n and define the random variable Y_i by setting $Y_i = \tilde{\chi}_i(X)$ if $X \in V(G_i)$, and $Y_i = \tilde{\chi}_i(Z_i)$ if $X \notin V(G_i)$, where Z_i is a random vertex of $V(G_i)$, chosen uniformly and independently of all other variables. Note that $H(X|Y_1, \ldots, Y_\ell) = 0$.]

(iii) Show that if $G = \bigcup_{i=1}^{\ell} G_i$ is a graph with *n* vertices and independence number at most α (i.e. *G* does not contain $\alpha + 1$ independent vertices) then $\sum_{i=1}^{\ell} w(G_i) \ge n \log_2(n/\alpha)$.

[Hint. Starting as in (ii), at most how large is the conditional entropy $H(X|Y_1,\ldots,Y_\ell)$?]

END OF PAPER