PAPER 15

COMBINATORIAL PROBABILITY

Attempt the FIRST QUESTION and ANY TWO other questions.
The FIRST QUESTION carries 40% of the marks, and the other questions carry 30% each.
Any results you quote should always be stated precisely.

StATIONERY REQUIREMENTS SPECIAL REQUIREMENTS
Cover sheet
None
Treasury tag
Script paper

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1 Let \mathcal{A} be a subset of the n-dimensional discrete cube $Q^{n}=\{0,1\}^{n}$. Write $t=|\mathcal{A}| / 2^{n}$ for the probability of \mathcal{A}, and for $i=1, \ldots, n$ write β_{i} for the influence of the i th variable on \mathcal{A}.
(i) State the basic identities and inequalities concerning the characteristic function $f=\mathbf{1}_{\mathcal{A}}$, its Fourier coefficients, the influences β_{i}, and the relevant consequence of the Bonami-Beckner inequality.
(ii) Show that if

$$
\sum_{i=1}^{n} \beta_{i}^{2}<\lambda^{2} / n
$$

for some $\lambda>0$ then

$$
\sum_{A \neq \emptyset}|A| \alpha_{A}^{2}<\lambda / 4
$$

and for $1<p=1+\delta<2$ we have

$$
\sum_{A \neq \emptyset}|A| \delta^{|A|} \alpha_{A}^{2}<\frac{1}{4} \lambda^{2 / p} n^{1-2 / p}
$$

(iii) Show that if n is sufficiently large then

$$
\sum_{i=1}^{n} \beta_{i}^{2} \geq t^{2}(1-t)^{2}(\log n)^{2} / n
$$

[Hint for Part (iii). Set

$$
\lambda=t(1-t) \log n, \quad \gamma=3(\log \log n) / \log n, \quad \delta=1-\gamma \quad \text { and } \quad p=1+\delta
$$

and make use of the inequalities in Part (ii). You may find it convenient to consider

$$
\sum_{A \neq \emptyset} \alpha_{A}^{2}=\sum_{1 \leq|A|<b} \alpha_{A}^{2}+\sum_{|A|>b} \alpha_{A}^{2},
$$

where $b=(\log n) / 3$.]

2 (i) State the Uniform Cover Inequality for projections of bodies, and deduce from it the Box Theorem.
(ii) Let S_{1}, \ldots, S_{n} be non-empty finite sets of integers. For $\emptyset \neq A \subset[n]$ put $S_{A}=\left\{\sum_{i \in A} s_{i}\right.$: $s_{i} \in S_{i}$ for every $\left.i \in A\right\}$, so that $S=S_{[n]}$ is the sum of all n sets and $S_{\{i\}}=S_{i}$ for every i. Show that there are constants $b_{1}, \ldots, b_{n}>0$ such that

$$
|S|=\prod_{1}^{n} b_{i} \quad \text { and } \quad\left|S_{A}\right| \geq \prod_{i \in A} b_{i} \text { for all } A \subset[n]
$$

(iii) Show also that if $\left|S_{i}\right|=2$ for every i and $\left|S_{\{i, j\}}\right|=4$ for all $1 \leq i<j \leq n$ then $|S| \geq\binom{ n+1}{2}+1$, and that this inequality is best possible for every n.
[Hint to Part (iii). Show that you may assume that $S_{i}=\left\{0, s_{i}\right\}$ and $0<s_{1}<\cdots<s_{n}$, and enumerate some elements of S that are guaranteed to be different: $0<s_{1}<s_{2}<s_{1}+s_{2}<$ $s_{1}+s_{3}<\ldots$]

3 (i) State the Balister-Bollobás Inequality and deduce from it the Madiman-Tetali Inequality.
(ii) Let G be a graph on $[n]$ with degree sequence $d_{1} \geq d_{2} \geq \cdots \geq d_{n} \geq 1$. For $1 \leq i \leq n$, write b_{i} for the number of vertices $j<i$ that are joined to i. Show that G has at most

$$
\prod_{i=1}^{n}\left(2^{b_{i}+1}-1\right)^{1 / d_{i}}
$$

independent sets.
(iii) Give an infinite family of examples for which the bound above is attained.

4 (i) Use entropy methods to prove that if the complete graph K_{n} is the union of ℓ bipartite graphs G_{1}, \ldots, G_{ℓ}, then $\sum_{i=1}^{\ell}\left|G_{i}\right| \geq n \log _{2} n$, where $\left|G_{i}\right|$ is the order of G_{i}.
[Hint. Let $\chi_{i}: V\left(G_{i}\right) \rightarrow\{0,1\}$ be a (proper) two-colouring of G_{i}. Let X be a vertex of K_{n} chosen uniformly at random, and for each i define a random variable Y_{i} by setting $Y_{i}=\chi_{i}(X)$ if $X \in V\left(G_{i}\right)$, and $Y_{i}=\chi_{i}\left(Z_{i}\right)$ if $X \notin V\left(G_{i}\right)$, where Z_{i} is a random vertex of $V\left(G_{i}\right)$, chosen uniformly and independently of all other choices. Note that $H\left(X \mid Y_{1}, \ldots, Y_{\ell}\right)=0$.]
(ii) A weight $w(G)$ of a graph G is defined as follows. Let Z be a vertex of G chosen uniformly at random, and let $\widetilde{\chi}$ be a (proper) colouring of the vertices of G that minimizes the entropy $H(\widetilde{\chi}(Z))$. The weight of G is then $w(G)=|G| H(\widetilde{\chi}(Z))$. Show that if the complete graph K_{n} is the union of ℓ graphs G_{1}, \ldots, G_{ℓ} then $\sum_{i=1}^{\ell} w\left(G_{i}\right) \geq n \log _{2} n$. Justify all the steps in your argument.
[Hint. Let X be a random vertex of K_{n} and define the random variable Y_{i} by setting $Y_{i}=\tilde{\chi}_{i}(X)$ if $X \in V\left(G_{i}\right)$, and $Y_{i}=\widetilde{\chi}_{i}\left(Z_{i}\right)$ if $X \notin V\left(G_{i}\right)$, where Z_{i} is a random vertex of $V\left(G_{i}\right)$, chosen uniformly and independently of all other variables. Note that $H\left(X \mid Y_{1}, \ldots, Y_{\ell}\right)=0$.]
(iii) Show that if $G=\bigcup_{i=1}^{\ell} G_{i}$ is a graph with n vertices and independence number at most α (i.e. G does not contain $\alpha+1$ independent vertices) then $\sum_{i=1}^{\ell} w\left(G_{i}\right) \geq n \log _{2}(n / \alpha)$.
[Hint. Starting as in (ii), at most how large is the conditional entropy $H\left(X \mid Y_{1}, \ldots, Y_{\ell}\right)$?]

END OF PAPER

