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1 Let A be a subset of the n-dimensional discrete cube Qn = {0, 1}n. Write t = |A|/2n for
the probability of A, and for i = 1, . . . , n write βi for the influence of the ith variable on A.

(i) State the basic identities and inequalities concerning the characteristic function f = 1A,
its Fourier coefficients, the influences βi, and the relevant consequence of the Bonami–Beckner
inequality.

(ii) Show that if
n∑

i=1

β2
i < λ2/n

for some λ > 0 then ∑
A 6=∅

|A|α2
A < λ/4

and for 1 < p = 1 + δ < 2 we have∑
A 6=∅

|A|δ|A|α2
A <

1
4
λ2/pn1−2/p.

(iii) Show that if n is sufficiently large then

n∑
i=1

β2
i ≥ t2(1− t)2(log n)2/n.

[Hint for Part (iii). Set

λ = t(1− t) log n, γ = 3(log log n)/ log n, δ = 1− γ and p = 1 + δ,

and make use of the inequalities in Part (ii). You may find it convenient to consider∑
A 6=∅

α2
A =

∑
1≤|A|<b

α2
A +

∑
|A|>b

α2
A,

where b = (log n)/3.]
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2 (i) State the Uniform Cover Inequality for projections of bodies, and deduce from it the
Box Theorem.

(ii) Let S1, . . . , Sn be non-empty finite sets of integers. For ∅ 6= A ⊂ [n] put SA = {
∑

i∈A si :
si ∈ Si for every i ∈ A}, so that S = S[n] is the sum of all n sets and S{i} = Si for every i.
Show that there are constants b1, . . . , bn > 0 such that

|S| =
n∏
1

bi and |SA| ≥
∏
i∈A

bi for all A ⊂ [n].

(iii) Show also that if |Si| = 2 for every i and |S{i,j}| = 4 for all 1 ≤ i < j ≤ n then
|S| ≥

(
n+1

2

)
+ 1, and that this inequality is best possible for every n.

[Hint to Part (iii). Show that you may assume that Si = {0, si} and 0 < s1 < · · · < sn, and
enumerate some elements of S that are guaranteed to be different: 0 < s1 < s2 < s1 + s2 <
s1 + s3 < . . . .]

3 (i) State the Balister–Bollobás Inequality and deduce from it the Madiman–Tetali
Inequality.

(ii) Let G be a graph on [n] with degree sequence d1 ≥ d2 ≥ · · · ≥ dn ≥ 1. For 1 ≤ i ≤ n, write
bi for the number of vertices j < i that are joined to i. Show that G has at most

n∏
i=1

(2bi+1 − 1)1/di

independent sets.

(iii) Give an infinite family of examples for which the bound above is attained.
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4 (i) Use entropy methods to prove that if the complete graph Kn is the union of ` bipartite
graphs G1, . . . , G`, then

∑`
i=1 |Gi| ≥ n log2 n, where |Gi| is the order of Gi.

[Hint. Let χi : V (Gi) → {0, 1} be a (proper) two-colouring of Gi. Let X be a vertex of Kn

chosen uniformly at random, and for each i define a random variable Yi by setting Yi = χi(X)
if X ∈ V (Gi), and Yi = χi(Zi) if X /∈ V (Gi), where Zi is a random vertex of V (Gi), chosen
uniformly and independently of all other choices. Note that H(X|Y1, . . . , Y`) = 0. ]

(ii) A weight w(G) of a graph G is defined as follows. Let Z be a vertex of G chosen uniformly
at random, and let χ̃ be a (proper) colouring of the vertices of G that minimizes the entropy
H(χ̃(Z)). The weight of G is then w(G) = |G| H(χ̃(Z)). Show that if the complete graph Kn

is the union of ` graphs G1, . . . , G` then
∑`

i=1w(Gi) ≥ n log2 n. Justify all the steps in your
argument.

[Hint. Let X be a random vertex of Kn and define the random variable Yi by setting Yi = χ̃i(X)
if X ∈ V (Gi), and Yi = χ̃i(Zi) if X /∈ V (Gi), where Zi is a random vertex of V (Gi), chosen
uniformly and independently of all other variables. Note that H(X|Y1, . . . , Y`) = 0. ]

(iii) Show that if G =
⋃`

i=1Gi is a graph with n vertices and independence number at most α
(i.e. G does not contain α+ 1 independent vertices) then

∑`
i=1w(Gi) ≥ n log2(n/α).

[Hint. Starting as in (ii), at most how large is the conditional entropy H(X|Y1, . . . , Y`)?]
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