MATHEMATICAL TRIPOS
 Part III

Thursday 7 June 20071.30 to 4.30

PAPER 19

COBORDISM

Attempt FOUR questions.
There are $\boldsymbol{F I V E}$ questions in total.
The questions carry equal weight.

STATIONERY REQUIREMENTS
Cover sheet
Treasury Tag
Script paper

SPECIAL REQUIREMENTS None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1 Let $\Omega_{U}^{*}(\cdot)$ be complex cobordism, i.e. the cobordism theory corresponding to stable complex structures in vector bundles. Explain what is meant by a complex structure on a continuous map $f: X \rightarrow Y$ of C^{∞}-smooth manifolds, and for a fixed complex structure on f define (without proofs) the Gysin map $f_{!}$in $\Omega_{U}^{*}(\cdot)$. Prove that if L is a submanifold of a manifold M and the normal bundle ν of the embedding $i: L \subset M$ has a stable complex structure, then

$$
i^{*} i_{!}(1) \in \Omega_{U}^{2 n}(L)
$$

is the top Chern class of ν in complex cobordism $\left(\operatorname{dim}_{\mathbb{C}} \nu=n\right)$. You may assume that all manifolds in this question are compact and without a boundary.

2 Let η be a vector bundle, $\operatorname{dim}_{\mathbb{R}} \eta=n$, over a smooth base space X and with a framed structure, i.e. with a continuous choice of an (ordered) orthonormal frame in each fiber of η. By considering the appropriate (non-ordered) Stiefelization of η, for each $k=1,2, \ldots, n$ construct an $\binom{n}{k}$-sheeted cover $p_{k}: X_{k} \rightarrow X$, and define exotic characteristic classes of η by

$$
l_{k}(\eta)=\left(p_{k}\right)_{!}(1) \in \Omega_{f r}^{0}(X), \quad k=1, \ldots, n
$$

Deduce the Whitney sum formula for l_{k} :

$$
l_{k}(\eta \oplus \zeta)=\sum_{i+j=k} l_{i}(\eta) l_{j}(\zeta),
$$

for two framed bundles η and ζ.

3 Define the d_{1}-metric on the space of C^{∞}-maps of a compact manifold $M \subset \mathbb{R}^{k}$ into the Euclidean space \mathbb{R}^{N}. Let $f_{1}, f_{2}, \ldots \in C^{\infty}\left(M, \mathbb{R}^{N}\right)$ be a sequence of maps which converges with respect to the d_{1}-metric to an embedding $i: M \subset \mathbb{R}^{N}$. Prove that there is an N_{0} such that for any $n>N_{0}$ the map $f_{n}: M \rightarrow \mathbb{R}^{N}$ is an immersion. Assuming that the second derivatives of all the $f_{n}, n=1,2, \ldots$ are bounded by a constant C, prove that there is an N^{\prime} such that for any $n>N^{\prime}$ the map $f_{n}: M \rightarrow \mathbb{R}^{N}$ is an embedding.

4 State the axiom of exactness in a generalized cohomology theory $h^{*}(\cdot)$. Explain why it follows from exactness that for a one-point space x_{0} the group $h^{n}\left(x_{0}, x_{0}\right)$ is trivial for any n. Define the wedge product of two $C W$-pairs (X, A) and (Y, B). Assuming that $h^{*}(\cdot)$ is multiplicative, explain in which group the product of two elements $x \in h^{k}(X, A)$ and $y \in h^{m}(Y, B)$ lies. Let $A_{1}, A_{2}, \cdots, A_{l}$ be subcomplexes of a pointed $C W$-complex $\left(X, x_{0}\right)$ such that

$$
X=\bigcup_{j=1}^{l} A_{j}
$$

and suppose each A_{j} is contractible (homotopy equivalent to a point). Prove that for any $w_{1}, \ldots, w_{l} \in h^{*}\left(X, x_{0}\right)$ the product $w_{1} \cdot w_{2} \cdots w_{l}$ is zero.
$5 \quad$ Let $\mathbb{H} P^{2}$ be the quaternionic projective plane. Compute the complex cobordism ring $\Omega_{U}^{*}\left(\mathbb{H} P^{2}, \emptyset\right)$ as a ring over $\Omega_{U}^{*}(\{p t\}, \emptyset)$. Explain carefully all steps of your proof.

END OF PAPER

