MATHEMATICAL TRIPOS Part III

Thursday 7 June 2007 1.30 to 4.30

PAPER 19

COBORDISM

Attempt **FOUR** questions. There are **FIVE** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. 1 Let $\Omega^*_U(\cdot)$ be complex cobordism, i.e. the cobordism theory corresponding to stable complex structures in vector bundles. Explain what is meant by a complex structure on a continuous map $f: X \to Y$ of C^{∞} -smooth manifolds, and for a fixed complex structure on f define (without proofs) the Gysin map $f_!$ in $\Omega^*_U(\cdot)$. Prove that if L is a submanifold of a manifold M and the normal bundle ν of the embedding $i: L \subset M$ has a stable complex structure, then

$$i^*i_!(1) \in \Omega^{2n}_U(L)$$

is the top Chern class of ν in complex cobordism (dim_{$\mathbb{C}} <math>\nu = n$). You may assume that all manifolds in this question are compact and without a boundary.</sub>

2 Let η be a vector bundle, $\dim_{\mathbb{R}} \eta = n$, over a smooth base space X and with a framed structure, i.e. with a continuous choice of an (ordered) orthonormal frame in each fiber of η . By considering the appropriate (non-ordered) Stiefelization of η , for each k = 1, 2, ..., n construct an $\binom{n}{k}$ -sheeted cover $p_k : X_k \to X$, and define exotic characteristic classes of η by

$$l_k(\eta) = (p_k)_1(1) \in \Omega^0_{fr}(X), \quad k = 1, \dots, n$$

Deduce the Whitney sum formula for l_k :

$$l_k(\eta \oplus \zeta) = \sum_{i+j=k} l_i(\eta) l_j(\zeta),$$

for two framed bundles η and ζ .

3 Define the d_1 -metric on the space of C^{∞} -maps of a compact manifold $M \subset \mathbb{R}^k$ into the Euclidean space \mathbb{R}^N . Let $f_1, f_2, \ldots \in C^{\infty}(M, \mathbb{R}^N)$ be a sequence of maps which converges with respect to the d_1 -metric to an embedding $i: M \subset \mathbb{R}^N$. Prove that there is an N_0 such that for any $n > N_0$ the map $f_n: M \to \mathbb{R}^N$ is an immersion. Assuming that the second derivatives of all the $f_n, n = 1, 2, \ldots$ are bounded by a constant C, prove that there is an N' such that for any n > N' the map $f_n: M \to \mathbb{R}^N$ is an embedding. 4 State the axiom of exactness in a generalized cohomology theory $h^*(\cdot)$. Explain why it follows from exactness that for a one-point space x_0 the group $h^n(x_0, x_0)$ is trivial for any n. Define the wedge product of two CW-pairs (X, A) and (Y, B). Assuming that $h^*(\cdot)$ is multiplicative, explain in which group the product of two elements $x \in h^k(X, A)$ and $y \in h^m(Y, B)$ lies. Let A_1, A_2, \dots, A_l be subcomplexes of a pointed CW-complex (X, x_0) such that

$$X = \bigcup_{j=1}^{l} A_j,$$

and suppose each A_j is contractible (homotopy equivalent to a point). Prove that for any $w_1, \ldots, w_l \in h^*(X, x_0)$ the product $w_1 \cdot w_2 \cdots w_l$ is zero.

5 Let $\mathbb{H}P^2$ be the quaternionic projective plane. Compute the complex cobordism ring $\Omega^*_U(\mathbb{H}P^2, \emptyset)$ as a ring over $\Omega^*_U(\{pt\}, \emptyset)$. Explain carefully all steps of your proof.

END OF PAPER