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1 Let Ω∗
U (·) be complex cobordism, i.e. the cobordism theory corresponding to stable

complex structures in vector bundles. Explain what is meant by a complex structure on a
continuous map f : X → Y of C∞-smooth manifolds, and for a fixed complex structure on
f define (without proofs) the Gysin map f! in Ω∗

U (·). Prove that if L is a submanifold of
a manifold M and the normal bundle ν of the embedding i : L ⊂ M has a stable complex
structure, then

i∗i!(1) ∈ Ω2n
U (L)

is the top Chern class of ν in complex cobordism (dimC ν = n). You may assume that all
manifolds in this question are compact and without a boundary.

2 Let η be a vector bundle, dimR η = n, over a smooth base space X and with a framed
structure, i.e. with a continuous choice of an (ordered) orthonormal frame in each fiber of
η. By considering the appropriate (non-ordered) Stiefelization of η, for each k = 1, 2, . . . , n
construct an

(
n
k

)
-sheeted cover pk : Xk → X, and define exotic characteristic classes of η

by
lk(η) = (pk)! (1) ∈ Ω0

fr(X), k = 1, . . . , n

Deduce the Whitney sum formula for lk:

lk(η ⊕ ζ) =
∑

i+j=k

li(η)lj(ζ),

for two framed bundles η and ζ.

3 Define the d1-metric on the space of C∞-maps of a compact manifold M ⊂ Rk

into the Euclidean space RN . Let f1, f2, ... ∈ C∞(M, RN ) be a sequence of maps which
converges with respect to the d1-metric to an embedding i : M ⊂ RN . Prove that there is
an N0 such that for any n > N0 the map fn : M → RN is an immersion. Assuming that
the second derivatives of all the fn, n = 1, 2, . . . are bounded by a constant C, prove that
there is an N ′ such that for any n > N ′ the map fn : M → RN is an embedding.
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4 State the axiom of exactness in a generalized cohomology theory h∗(·). Explain
why it follows from exactness that for a one-point space x0 the group hn(x0, x0) is trivial
for any n. Define the wedge product of two CW -pairs (X, A) and (Y,B). Assuming that
h∗(·) is multiplicative, explain in which group the product of two elements x ∈ hk(X, A)
and y ∈ hm(Y,B) lies. Let A1, A2, · · · , Al be subcomplexes of a pointed CW -complex
(X, x0) such that

X =
l⋃

j=1

Aj ,

and suppose each Aj is contractible (homotopy equivalent to a point). Prove that for any
w1, . . . , wl ∈ h∗(X, x0) the product w1 · w2 · · · · wl is zero.

5 Let HP 2 be the quaternionic projective plane. Compute the complex cobordism
ring Ω∗

U (HP 2, ∅) as a ring over Ω∗
U ({pt}, ∅). Explain carefully all steps of your proof.

END OF PAPER
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