

### MATHEMATICAL TRIPOS Part III

Friday 28 May, 2004 9 to 12

## PAPER 23

# CATEGORY THEORY

Attempt **ONE** question from Section A and **TWO** from Section B. There are **six** questions in total. The questions carry equal weight.

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.  $\mathbf{2}$ 

#### Section A

1 State and prove some form of the Adjoint Functor Theorem. Use it to establish the following result: 'If  $\mathcal{C}$  and  $\mathcal{D}$  are small categories and  $F: \mathcal{C} \to \mathcal{D}$  a functor, then the functor  $F^*: [\mathcal{D}, \mathbf{Set}] \to [\mathcal{C}, \mathbf{Set}]$  which sends G to GF has a left adjoint'.

**2** P. Freyd has suggested that 'the purpose of category theory is to show that which is trivial is trivially trivial'. Write a short essay arguing **either** for **or** against this point of view, with reference to any of the major results proved in the course.

#### Section B

**3** A functor  $F : \mathcal{C} \to \mathcal{D}$  is said to be *final* if, for each object B of  $\mathcal{D}$ , the arrow category  $(B \downarrow F)$  is (nonempty and) connected. F is said to be a *discrete fibration* if, given  $A \in \text{ob } \mathcal{C}$  and  $f : B \to FA$  in  $\mathcal{D}$ , there exists a unique  $\tilde{f} : \tilde{B} \to A$  in  $\mathcal{C}$  with  $F\tilde{f} = f$ .

(i) Given a commutative square



where F is final and G is a discrete fibration, show that there is a unique functor  $L: \mathcal{B} \to \mathcal{C}$ with LF = H and GL = K.

(ii) Show that any functor  $F: \mathcal{C} \to \mathcal{D}$  can be factored as a final functor followed by a discrete fibration. [Hint: construct a category  $\mathcal{E}$  whose objects are all connected components of the categories  $(B \downarrow F), B \in \text{ob } \mathcal{D}$ .]

(iii) Deduce from (i) that the factorization in (ii) is unique up to canonical isomorphism.

**4** Explain what is meant by the statement that an adjunction is *monadic*, and by the *monadic length* of an arbitrary adjunction. State the Precise Monadicity Theorem.

Let  $\mathcal{C}_n$  denote the category whose objects are sets A equipped with n partial unary operations  $\alpha_i : A \to A$   $(1 \leq i \leq n)$ , such that  $\alpha_1(a)$  is defined for all  $a \in A$  and, for i > 1,  $\alpha_i(a)$  is defined iff  $(\alpha_{i-1}(a))$  is defined and  $\alpha_{i-1}(a) = a$ . Morphisms  $A \to B$  in  $\mathcal{C}_n$  are functions f such that  $\alpha_i(f(a)) = f(\alpha_i(a))$  whenever  $\alpha_i(a)$  is defined. Show that the forgetful functor  $\mathcal{C}_n \to \mathcal{C}_{n-1}$  (which 'forgets' the operation  $\alpha_n$ ) has a left adjoint, and that the adjunction is monadic. Show also that the composite adjunction between  $\mathcal{C}_n$ and  $\mathcal{C}_0 = \mathbf{Set}$  has monadic length n. [Hint: show that the monad on  $\mathcal{C}_m$  induced by the forgetful functor  $\mathcal{C}_n \to \mathcal{C}_m$  and its left adjoint, for any n > m, is independent of n.]

Paper 23

3

**5** Explain what is meant by a *filtered category*, and sketch the proof that filtered colimits commute with finite limits in **Set**.

Let  $\mathcal{C}$  be a small category with finite limits and  $F: \mathcal{C} \to \mathbf{Set}$  a functor. Show that the following conditions are equivalent:

- (i) F preserves finite limits.
- (ii) For any set A, the category  $(A \downarrow F)$  has finite limits.
- (iii)  $(1 \downarrow F)^{\text{op}}$  is filtered, where 1 denotes a one-element set.
- (iv) F is expressible as a filtered colimit of representable functors.

6 Explain what is meant by a *regular category*, and by the statement that a regular category is *capital*. Sketch the proof that any small regular category C admits an isomorphism-reflecting regular functor to a capital regular category. Under what conditions does C admit an isomorphism-reflecting regular functor to **Set**? [Detailed proofs are not required.]