PAPER 61

BOUNDARY VALUE PROBLEMS FOR INTEGRABLE PDE's

Attempt TWO questions.
There are three questions in total.
The questions carry equal weight.

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1 Let $Q(X, T)$ satisfy the following initial-boundary value problem:

$$
\begin{gathered}
Q_{T}+Q_{X X X}+a Q_{X X}+b Q_{X}+c Q=0, \quad 0<X<\infty, \quad T>0 \\
Q(X, 0)=Q_{0}(X), \quad 0<X<\infty \\
Q(0, T)=G_{0}(T), \quad T>0
\end{gathered}
$$

where a, b, c are real constants, $a<0, b<0, a^{2} \neq 3 b$, the function $Q_{0}(X)$ decays for large X, and the functions Q_{0} and G_{0} have sufficient smoothness and are compatible at $X=T=0$, i.e. $Q_{0}(0)=G_{0}(0)$.
(a) Show that by a suitable change of variables the above problem can be reduced to the following problem:

$$
\begin{gather*}
q_{t}+q_{x x x}-q_{x}=0, \quad 0<x<\infty, \quad t>0 \tag{1.1}\\
q(x, 0)=q_{0}(x), \quad 0<x<\infty \\
q(0, t)=g_{0}(t), \quad t>0
\end{gather*}
$$

and express q_{0} and g_{0} in terms of Q_{0} and G_{0}.
(b) Write equation (1.1) in the form

$$
\left(e^{-i k x+w(k) t} q\right)_{t}+\left(e^{-i k x+w(k) t} X\right)_{x}=0, \quad k \in \mathbb{C}
$$

where $w(k), X(x, t, k)$ are to be determined.
(c) Use the result of (b) and the Fourier transform to construct an integral representation for $q(x, t)$ in the complex k-plane involving appropriate spectral functions.
(d) Use the global relation to express the spectral functions in terms of the Fourier transform of $q_{0}(x)$ and of a t-transform of $g_{0}(t)$.
(e) Rewrite the spectral functions in a form suitable for analysing the long time behaviour of the solution.
(f) Comment briefly on the case of $a>0$.
$2 \quad$ Let D be the equilateral triangle with corners at the points

$$
z_{1}=\frac{\ell e^{\frac{i \pi}{3}}}{\sqrt{3}}, \quad z_{2}=\overline{z_{1}}, \quad z_{3}=-\frac{l}{\sqrt{3}}
$$

where z denotes the usual complex variable $z=x+i y$ and l is a positive constant. The sides $\left(z_{2}, z_{1}\right),\left(z_{3}, z_{2}\right),\left(z_{1}, z_{3}\right)$ will be referred to as sides $(1),(2),(3)$ respectively. The function $q^{(j)}(s)$ denotes q on the side (j) and the function $q_{N}^{(j)}(s)$ denotes the Neumann boundary value on the side (j). Let the real-valued function $q(x, y)$ satisfy the PDE

$$
\begin{equation*}
q_{x x}+q_{y y}-4 \lambda q=0, \quad(x, y) \in D \tag{2.1}
\end{equation*}
$$

where λ is a real constant, with the Dirichlet boundary conditions

$$
\begin{equation*}
q^{(j)}(s)=f(s), \quad s \in\left[-\frac{l}{2}, \frac{l}{2}\right], \quad j=1,2,3 \tag{2.2}
\end{equation*}
$$

where the function $f(s)$ is sufficiently smooth and satisfies the continuity condition $f\left(-\frac{l}{2}\right)=f\left(\frac{l}{2}\right)$.
(a) Show that the 1-form

$$
W=e^{-i k z-\frac{\lambda}{i k} \bar{z}}\left(q_{z} d z-\frac{\lambda}{i k} q d \bar{z}\right), \quad k \in \mathbb{C}-\{0\},
$$

is closed.
(b) Show that the global relation associated with equation (2.1) is

$$
\begin{gathered}
E(-i k) \Psi_{1}(k)+E(-i \bar{a} k) \Psi_{2}(\bar{a} k)+E(-i a k) \Psi_{3}(a k)= \\
2 i\left[E(-i k) \Phi_{1}(k)+E(-i \bar{a} k) \Phi_{2}(\bar{a} k)+E(-i a k) \Phi_{3}(a k)\right], \quad k \in \mathbb{C}-\{0\}
\end{gathered}
$$

where

$$
\begin{gathered}
E(k)=e^{\left(k+\frac{\lambda}{k}\right) \frac{l}{2 \sqrt{3}}}, \quad a=e^{\frac{2 i \pi}{3}}, \\
\Psi_{j}(k)=\int_{-\frac{l}{2}}^{\frac{l}{2}} e^{\left(k+\frac{\lambda}{k}\right) s} q_{N}^{(j)}(s) d s, \\
\Phi_{j}(k)=\int_{-\frac{l}{2}}^{\frac{l}{2}} e^{\left(k+\frac{\lambda}{k}\right) s}\left[\frac{1}{2} \frac{d}{d s} q^{(j)}(s)+\frac{\lambda}{k} q^{(j)}(s)\right] d s .
\end{gathered}
$$

and $q_{N}^{(j)}(s)$ denotes the Neumann boundary value on the side (j).
(c) Show that in the particular case of the boundary conditions (2.2) the global relation is

$$
\begin{equation*}
e(\bar{a} k) \Psi(k)+e(-k) \Psi(\bar{a} k)+\Psi(a k)=2 i A(k), \tag{2.3}
\end{equation*}
$$

and compute $e(k)$ and $A(k)$. For this derivation recall that

$$
1+a+\bar{a}=0, \quad i \bar{a}-i a=\sqrt{3}, \quad i a-i=\sqrt{3} \bar{a}
$$

(d) Use equation (2.3) as well as the equation obtained from equation (2.3) by Schwarz conjugation to compute $q_{N}(s)$ in terms of $f(s)$.

3 It can be shown that the defocusing NLS equation

$$
\begin{equation*}
i q_{t}+q_{x x}-2|q|^{2} q=0 \tag{3.1}
\end{equation*}
$$

admits the Lax pair

$$
\begin{gathered}
\mu_{x}+i k \hat{\sigma}_{3} \mu=Q \mu \\
\mu_{t}+2 i k^{2} \hat{\sigma}_{3} \mu=\left(2 k Q-i Q_{x} \sigma_{3}-i|q|^{2} \sigma_{3}\right) \mu
\end{gathered}
$$

where $\mu(x, t, k)$ is a 2×2 matrix-valued function and $\hat{\sigma}_{3}, \sigma_{3}, Q$ are defined as follows:

$$
\begin{aligned}
& \hat{\sigma} \mu=\left[\sigma_{3}, \mu\right], \sigma=\operatorname{diag}(1,-1), \\
& Q(x, t)=\left(\begin{array}{cc}
0 & q(x, t) \\
\bar{q}(x, t) & 0
\end{array}\right) .
\end{aligned}
$$

Let q be a complex-valued function decaying as $x \rightarrow \infty$, which satisfies the defocusing NLS equation in $0<x<\infty, 0<t<T$, where T is a positive constant.
(a) Let $\mu_{1}, \mu_{2}, \mu_{3}$, be solutions of the above Lax pair normalized at $(0, T),(0,0)$, (∞, T) respectively. Find the domains of the complex k-plane where the column vectors of these matrices are bounded and analytic.
(b) Show that the functions $\mu_{j}, j=1,2,3$, are related by the equations

$$
\begin{aligned}
& \mu_{3}(x, t, k)=\mu_{2}(x, t, k) e^{-i\left(k x+2 k^{2} t\right) \hat{\sigma}} s(k), \\
& \mu_{1}(x, t, k)=\mu_{2}(x, t, k) e^{-i\left(k x+2 k^{2} t\right) \hat{\sigma}} S(k),
\end{aligned}
$$

and express $s(k)$ and $S(k)$ in terms of $\mu_{3}(x, 0, k)$ and $\mu_{2}(0, t, k)$.
(c) Discuss how the equations obtained in (b) can be used to obtain a RiemannHilbert problem. What is the relevant contour for this Riemann-Hilbert problem?
(d) Show that there exists a simple relation between $s(k)$ and $S(k)$.
(e) By analysing the linear limit of the relation obtained in (d), determine the number of the boundary conditions needed at $x=0$ for the problem to be well posed, at least for a small suitable norm of q.
(f) Consider the following homogeneous Robin problem for eq (3.1) on the quarter plane $0<x<\infty, \quad 0<t<\infty$:

$$
\begin{gathered}
q(x, 0)=q_{0}(x) \in \mathcal{S}\left(\mathbb{R}^{+}\right) \\
q_{x}(0, t)-c q(0, t)=0
\end{gathered}
$$

where c is a real constant and \mathcal{S} denotes the space of Schwartz functions.
Introduce the notations

$$
a(k)=(s(k))_{22}, \quad b(k)=(s(k))_{12}, \quad A(k)=(S(k))_{22}, \quad B(k)=(S(k))_{12} .
$$

Find an expression for $B(k) / A(k)$ in terms of $a(k)$ and $b(k)$ and hence deduce that the Riemann-Hilbert problem discussed in (c) above is uniquely specified in terms of $q_{0}(x)$ and c.

