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1 A transition between modes of plasma confinement in a tokamak is described by
the following differential equations for real variables u(t) and v(t):

u̇ = µu + (1− σ)v − 1
2
(u− v)(u2 + v2),

v̇ = µv + (1 + σ)u− 1
2
(u + v)(u2 + v2),

(1)

for real parameters µ and σ.

(a) Show that equilibrium points exist at u = v = 0 and when

u2 + v2 = µ + σ ±
√

2− (µ− σ)2.

Identify all the local bifurcations from the equilibrium point u = v = 0. Show, using
Dulac’s criterion or otherwise, that the Hopf bifurcation is supercritical.

(b) Sketch the regions of the (σ, µ) plane in which (i) the origin is stable, and (ii)
nontrivial equilibria exist. Briefly describe the codimension-two point σ = −µ = 1/

√
2.

(c) Show that the point σ = 1, µ = 0 is also a codimension-two point. Apply
the rescalings u = ε2ũ, v = εṽ, t̃ = εt, µ = ε2µ̃, σ = 1 + ε2s to the equations (1).
Dropping the ˜, show that, for ε = 0, the rescaled equations have a conserved quantity
H = u2 + s

2v2 − 1
8v4. Sketch the phase portrait when ε = 0 and s > 0. Give the value of

H that corresponds to the heteroclinic orbits.

(d) Explain how the rescaled equations are of use in detecting global bifurcations
near σ = 1, µ = 0. You should explain the significance of the expression

M(µ, s) =
∫ √

2s

−
√

2s

(
µ− v2

2

) (
s +

v2

2

)
dv,

but need not evaluate it.
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2 (a) Find the fixed points for the Hénon map

xn+1 = yn,

yn+1 = µ− bxn − y2
n,

(2)

where b > −1. Investigate the regions of the (b, µ) plane in which the fixed points (i) exist
and (ii) are stable.

Identify the bifurcations on the boundaries of these regions. Hence sketch a (partial)
bifurcation diagram in the (µ, y) plane for b = 1.

Explain why the addition of small perturbation terms to (2) does not qualitatively
change the bifurcation behaviour.

(b) Consider the 2D map

xn+1 = (a + 1)xn − x3
n + yn,

yn+1 = (b− 1)yn − (b− 1)x3
n + y3

n,
(3)

where a and b are real parameters. Investigate the codimension-one bifurcations from
the fixed point x = y = 0. By locating bifurcating orbits at small amplitude, determine
carefully whether the bifurcations are subcritical or supercritical. Indicate the location of
bifurcating orbits on a sketch of the (a, b) plane.

Describe the codimension-two bifurcation at a = −1, b = 0.
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3 Consider a 2D flow containing the following codimension-two bifurcation involving
a local and a global bifurcation. Near x = y = 0 the flow can be well approximated by
the equations

ẋ = x2 − µ ,

ẏ = −λy ,

where λ > 0 is constant, and µ is a bifurcation parameter. Suppose that the half of the
unstable manifold of (

√
µ, 0) that extends into x >

√
µ for small positive µ intersects the

line y = h ‘downwards’ at the point x = ν, where ν may be greater than or less than
√

µ.

(a) Explain why a global bifurcation occurs when ν =
√

µ. Assuming that µ > 0
and

√
µ � h, use

∫
dx/ẋ =

∫
dy/ẏ to construct a 1D return map for points (x, h) where

x >
√

µ that describes the dynamics near the global bifurcation.

Show graphically that the return map has a stable fixed point when ν >
√

µ.

(b) By a similar construction show that a stable periodic orbit exists for the flow
when µ < 0, for all ν.

(c) Sketch the phase portrait near the origin in the (x, y) plane when ν < 0, for
small negative µ. By integrating from x = −h to x = h show that the period T of the
periodic orbit varies as T ∼ π/

√
−µ as µ → 0−.

(d) Sketch the phase portraits near µ = ν = 0 in the three regions µ > ν2,
0 < µ < ν2 and µ < 0 for ν both positive and negative.

4 (a) A mildly subcritical pattern forming instability in a domain 0 6 x 6 L with
periodic boundary conditions can be described by the PDE

wt = [r − (1 + ∂2
xx)2]w + sw3 − w5. (4)

Derive the subcritical cubic-quintic Ginzburg–Landau equation

AT = µA + 3ŝA|A|2 − 10A|A|4 + 4AXX (5)

for the evolution of small amplitude solutions to (4), by expanding w(x, t) = εw1(x, t) +
ε2w2(x, t) + · · · and introducing rescaled parameters µ and ŝ defined by r = ε4µ and
s = ε2ŝ. Justify the scalings you use for the slow space and time variables X and T . State
the solvability condition you use clearly.

(b) Sketch a bifurcation diagram in the (µ,A2
0) plane showing the amplitude A0 of

real X-independent solutions of (5). Locate the saddle-node bifurcation point.

(c) By writing A(X, T ) = A0 + a(T )ei`X , show that bifurcations to modulated
(X-dependent) states with wavenumber ` > 0 occur when

µ− 4`2 + 9ŝA2
0 − 50A4

0 = 0.

Hence show that no real X-independent solution of (5) undergoes such a bifurcation if

L <
8π
√

10
3s

.
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