

MATHEMATICAL TRIPOS Part III

Friday 9 June, 2006 9 to 12

PAPER 85

BIFURCATIONS AND INSTABILITIES IN DISSIPATIVE SYSTEMS

Attempt **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS Cover sheet Treasury Tag Script paper SPECIAL REQUIREMENTS
None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. **1** A transition between modes of plasma confinement in a tokamak is described by the following differential equations for real variables u(t) and v(t):

$$\dot{u} = \mu u + (1 - \sigma)v - \frac{1}{2}(u - v)(u^2 + v^2),$$

$$\dot{v} = \mu v + (1 + \sigma)u - \frac{1}{2}(u + v)(u^2 + v^2),$$
(1)

for real parameters μ and σ .

(a) Show that equilibrium points exist at u = v = 0 and when

$$u^{2} + v^{2} = \mu + \sigma \pm \sqrt{2 - (\mu - \sigma)^{2}}.$$

Identify all the local bifurcations from the equilibrium point u = v = 0. Show, using Dulac's criterion or otherwise, that the Hopf bifurcation is supercritical.

(b) Sketch the regions of the (σ, μ) plane in which (i) the origin is stable, and (ii) nontrivial equilibria exist. Briefly describe the codimension-two point $\sigma = -\mu = 1/\sqrt{2}$.

(c) Show that the point $\sigma = 1$, $\mu = 0$ is also a codimension-two point. Apply the rescalings $u = \varepsilon^2 \tilde{u}$, $v = \varepsilon \tilde{v}$, $\tilde{t} = \varepsilon t$, $\mu = \varepsilon^2 \tilde{\mu}$, $\sigma = 1 + \varepsilon^2 s$ to the equations (1). Dropping the $\tilde{}$, show that, for $\varepsilon = 0$, the rescaled equations have a conserved quantity $H = u^2 + \frac{s}{2}v^2 - \frac{1}{8}v^4$. Sketch the phase portrait when $\varepsilon = 0$ and s > 0. Give the value of H that corresponds to the heteroclinic orbits.

(d) Explain how the rescaled equations are of use in detecting global bifurcations near $\sigma = 1$, $\mu = 0$. You should explain the significance of the expression

$$M(\mu, s) = \int_{-\sqrt{2s}}^{\sqrt{2s}} \left(\mu - \frac{v^2}{2}\right) \left(s + \frac{v^2}{2}\right) \, \mathrm{d}v,$$

but need not evaluate it.

3

2 (a) Find the fixed points for the Hénon map

$$x_{n+1} = y_n, y_{n+1} = \mu - bx_n - y_n^2,$$
(2)

where b > -1. Investigate the regions of the (b, μ) plane in which the fixed points (i) exist and (ii) are stable.

Identify the bifurcations on the boundaries of these regions. Hence sketch a (partial) bifurcation diagram in the (μ, y) plane for b = 1.

Explain why the addition of small perturbation terms to (2) does not qualitatively change the bifurcation behaviour.

(b) Consider the 2D map

$$x_{n+1} = (a+1)x_n - x_n^3 + y_n,$$

$$y_{n+1} = (b-1)y_n - (b-1)x_n^3 + y_n^3,$$
(3)

where a and b are real parameters. Investigate the codimension-one bifurcations from the fixed point x = y = 0. By locating bifurcating orbits at small amplitude, determine carefully whether the bifurcations are subcritical or supercritical. Indicate the location of bifurcating orbits on a sketch of the (a, b) plane.

Describe the codimension-two bifurcation at a = -1, b = 0.

 $Paper \ 85$

4

3 Consider a 2D flow containing the following codimension-two bifurcation involving a local and a global bifurcation. Near x = y = 0 the flow can be well approximated by the equations

$$\begin{aligned} \dot{x} &= x^2 - \mu \,, \\ \dot{y} &= -\lambda y \,, \end{aligned}$$

where $\lambda > 0$ is constant, and μ is a bifurcation parameter. Suppose that the half of the unstable manifold of $(\sqrt{\mu}, 0)$ that extends into $x > \sqrt{\mu}$ for small positive μ intersects the line y = h 'downwards' at the point $x = \nu$, where ν may be greater than or less than $\sqrt{\mu}$.

(a) Explain why a global bifurcation occurs when $\nu = \sqrt{\mu}$. Assuming that $\mu > 0$ and $\sqrt{\mu} \ll h$, use $\int dx/\dot{x} = \int dy/\dot{y}$ to construct a 1D return map for points (x, h) where $x > \sqrt{\mu}$ that describes the dynamics near the global bifurcation.

Show graphically that the return map has a stable fixed point when $\nu > \sqrt{\mu}$.

(b) By a similar construction show that a stable periodic orbit exists for the flow when $\mu < 0$, for all ν .

(c) Sketch the phase portrait near the origin in the (x, y) plane when $\nu < 0$, for small negative μ . By integrating from x = -h to x = h show that the period T of the periodic orbit varies as $T \sim \pi/\sqrt{-\mu}$ as $\mu \to 0^-$.

(d) Sketch the phase portraits near $\mu = \nu = 0$ in the three regions $\mu > \nu^2$, $0 < \mu < \nu^2$ and $\mu < 0$ for ν both positive and negative.

4 (a) A mildly subcritical pattern forming instability in a domain $0 \le x \le L$ with periodic boundary conditions can be described by the PDE

$$w_t = [r - (1 + \partial_{xx}^2)^2]w + sw^3 - w^5.$$
(4)

Derive the subcritical cubic-quintic Ginzburg-Landau equation

$$A_T = \mu A + 3\hat{s}A|A|^2 - 10A|A|^4 + 4A_{XX}$$
(5)

for the evolution of small amplitude solutions to (4), by expanding $w(x,t) = \varepsilon w_1(x,t) + \varepsilon^2 w_2(x,t) + \cdots$ and introducing rescaled parameters μ and \hat{s} defined by $r = \varepsilon^4 \mu$ and $s = \varepsilon^2 \hat{s}$. Justify the scalings you use for the slow space and time variables X and T. State the solvability condition you use clearly.

(b) Sketch a bifurcation diagram in the (μ, A_0^2) plane showing the amplitude A_0 of real X-independent solutions of (5). Locate the saddle-node bifurcation point.

(c) By writing $A(X,T) = A_0 + a(T)e^{i\ell X}$, show that bifurcations to modulated (X-dependent) states with wavenumber $\ell > 0$ occur when

$$u - 4\ell^2 + 9\hat{s}A_0^2 - 50A_0^4 = 0.$$

Hence show that no real X-independent solution of (5) undergoes such a bifurcation if

$$L < \frac{8\pi\sqrt{10}}{3s}.$$

END OF PAPER

Paper 85