

MATHEMATICAL TRIPOS Part III

Thursday 9 June, 2005 9 to 12

PAPER 7

BANACH ALGEBRAS

Attempt **THREE** questions. There are **FIVE** questions in total. The questions carry equal weight.

All Banach algebras should be taken to be over the complex field, and to be non-zero.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. 2

1 Let A be a Banach algebra with identity element 1 and let G be the set of all invertible elements of A. Prove that G is an open subset of A and that the mapping $x \mapsto x^{-1}$ ($x \in G$) is a homeomorphism of G onto itself.

Let (x_n) be a sequence in G and let $x_n \to x$ as $n \to \infty$. Prove that if $x \notin G$ then:

- (i) $||x_n^{-1}|| \to \infty$ as $n \to \infty$;
- (ii) the element x has neither left nor right inverse.

Let $a \in A$ and suppose that, for each $\lambda \in \mathbb{C}$, $1 - \lambda a$ has either a left inverse or a right inverse. Prove that $\text{Sp} a = \{0\}$.

2 Let A be a Banach algebra with identity, let $x \in A$ and let U be an open neighbourhood of Sp x in \mathbb{C} . Prove that there is a unique continuous, unital homomorphism $\Theta_x : \mathcal{O}(U) \to A$ such that $\Theta_x(Z) = x$ (where Z is the function $Z(\lambda) = \lambda$ ($\lambda \in U$)).

Prove also that, for every $f \in \mathcal{O}(U)$, $\operatorname{Sp} \Theta_x(f) = f(\operatorname{Sp} x)$. [Any form of the Runge approximation theorem may be quoted without proof.]

Let $x \in A$ have the property that $\operatorname{Sp} x$ contains no real number $t \leq 0$. Prove that there is a unique element $y \in A$ such that both $y^3 = x$ and $|\arg \lambda| < \pi/3$ for every $\lambda \in \operatorname{Sp} y$.

3 Let A be a complex Banach algebra with identity, let L be a maximal left ideal of A and let the element a of A be such that $La \subseteq L$. Prove that there is a unique complex number λ such that $a - \lambda 1 \in L$.

Let $Z = \{z \in A : zx = xz \text{ for all } x \in A\}$ (i.e. Z is the *centre* of A). Prove that Z is a closed, commutative subalgebra of A, containing 1. Prove also that if L is any maximal left ideal of A then $L \cap Z$ is a maximal ideal of Z.

Paper 7

3

4 Let A be a Banach algebra with identity and, for each $x \in A$, let r(x) be the spectral radius of x. Let f be a holomorphic A-valued function on an open subset U of \mathbb{C} . Prove that for every compact subset K of U and for every $z \in K$:

- (i) $||f(z)|| \leq \sup_{w \in \partial K} ||f(w)||;$
- (ii) $r(f(z)) \leq \sup_{w \in \partial K} r(f(w)).$

[The Dini lemma may be quoted without proof.]

Let $a, b \in A$ and suppose that, for some constant C > 0, $r(a+zb) \leq C|z|$ for all $z \in \mathbb{C} \setminus \{0\}$. Prove that r(a) = 0.

5 Let A be a Banach algebra with identity. Define what it means for A to have an *involution* $x \mapsto x^*$.

Now suppose that A has an involution. Define what it means for an element x of A to be *hermitian*. Show that the elements 0 and 1 of A are both hermitian. Prove also that, for every $x \in A$:

- (i) $\operatorname{Sp}(x^*) = \{\overline{\lambda} : \lambda \in \operatorname{Sp} x\};$
- (ii) x is invertible if and only if both xx^* and x^*x are invertible.

Suppose now that A has the additional property that, for every hermitian element h of A, $\operatorname{Sp} h \subset \mathbb{R}$. Let B be a closed *-subalgebra of A, containing 1 and let $b \in B$. Prove that $\operatorname{Sp}_B(b) = \operatorname{Sp}_A(b)$.

[Results about the spectrum relative to subalgebras of general Banach algebras may be quoted without proof.]

END OF PAPER