

MATHEMATICAL TRIPOS Part III

Thursday 3 June, 2004 1.30 to 4.30

PAPER 10

BANACH ALGEBRAS

Attempt **THREE** questions.

There are **five** questions in total. The questions carry equal weight.

All Banach algebras should be taken to be over the complex field, and to be non-zero. For an element x of a Banach algebra, r(x) denotes the spectral radius of x.

> You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

2

1 Let A be a Banach algebra with identity element 1 and given norm $\|.\|$. Let S be a bounded subset of A such that $xy \in S$ whenever $x \in S$ and $y \in S$. Prove that there is a unital algebra-norm $\|.\|_1$ on A, that is equivalent to $\|.\|$ and is such that $\|s\|_1 \leq 1$ for all $s \in S$.

Define the spectrum $\operatorname{Sp} x$ of an arbitrary element $x \in A$ and state, without proof a formula that gives the spectral radius r(x) in terms of the norm. (N.B. the spectral radius is here defined as $r(x) = \sup\{|\lambda| : \lambda \in \operatorname{Sp} x\}$.) Prove that if r(x) < 1 then $\{x^n : n \ge 1\}$ is a bounded subset of A.

Let $F = \{x_1, \ldots, x_n\}$ be a finite subset of A such that $x_i x_j = x_j x_i$ for all $i, j = 1, \ldots, n$ and let $\epsilon > 0$. By using the result of the last paragraph, show that there is a unital algebra-norm $\| \cdot \|_0$ on A, equivalent to $\| \cdot \|$ and such that $\|x_j\|_0 < r(x_j) + \epsilon$ $(j = 1, \ldots, n)$.

Deduce (or prove otherwise), that if $a, b \in A$ satisfy ab = ba, then

$$r(ab) \leqslant r(a)r(b)$$
 and $r(a+b) \leqslant r(a) + r(b)$.

2 Let A be a Banach algebra with identity, let $x \in A$ and let U be an open neighbourhood of Sp x in \mathbb{C} . Prove that there is a unique continuous, unital homomorphism $\Theta_x : \mathcal{O}(U) \to A$ such that $\Theta_x(Z) = x$ (where Z is the function $Z(\lambda) = \lambda$ ($\lambda \in U$)).

Prove also that, for every $f \in \mathcal{O}(U)$, $\operatorname{Sp} \Theta_x(f) = f(\operatorname{Sp} x)$. [Any form of the Runge approximation theorem may be quoted without proof.]

Now suppose that $(x_n)_{n \ge 1}$ is a sequence in A with $x_n \to x$ as $n \to \infty$. Prove that:

(a) $\operatorname{Sp} x_n \subset U$ for all sufficiently large n;

(b) for every $f \in \mathcal{O}(U), \Theta_{x_n}(f) \to \Theta_x(f)$ as $n \to \infty$.

Suppose, in addition, that $U = V \cup W$, where V, W are open sets with $V \cap W = \emptyset$ and with $\operatorname{Sp} x \cap V \neq \emptyset$. Prove that:

(c) $\operatorname{Sp} x_n \cap V \neq \emptyset$ for all sufficiently large n.

3 Let A be a Banach algebra with identity, with A not necessarily commutative. Define a *primitive ideal* of A. Show that every maximal two-sided ideal of A is primitive.

Define the (Jacobson) radical J = J(A) of A to be the intersection of all the primitive ideals of A. Prove that:

(i) J is the intersection of all the maximal left ideals of A;

(ii) $J = \{x \in A : 1 + yx \text{ is invertible for every } y \in A\};$

(iii) J is the greatest ideal of A that is included in $N(A) \equiv \{x \in A : r(x) = 0\}.$

What does it mean to say that A is *semisimple*?

Let X be a Banach space, of dimension greater than 1, and let B = B(X) be the algebra of all bounded linear operators on X. Prove that B is semisimple, but that $N(B) \neq \{0\}$. [*Hint*: let f be a non-zero element of X^* and take some non-zero $x_0 \in X$ with $f(x_0) = 0$. Define $T \in B(X)$ by $T(x) = f(x)x_0$.]

Show that $\{0\}$ is a primitive ideal of B, but that, provided X is infinite-dimensional, $\{0\}$ is not a maximal ideal.

4 (i) Let $(f_n)_{n \ge 1}$ be a decreasing sequence of non-negative, continuous real-valued functions on a compact Hausdorff space K, and define $f(x) = \lim_{n \to \infty} f_n(x)$ $(x \in K)$. Prove that $\sup_K f_n \to \sup_K f$ as $n \to \infty$.

(ii) Let A be a Banach algebra with identity and let f be a holomorphic A-valued function on \mathbb{C} . Prove that for every R > 1,

$$r(f(1))^{2} \leq \sup_{|z|=R} r(f(z)) \sup_{|z|=R^{-1}} r(f(z)).$$

Deduce that if the function $z \mapsto r(f(z))$ is bounded on \mathbb{C} then it is constant.

5 Let A be a C^* -algebra (with identity); a linear functional f on A is said to be *positive* if $f(x^*x) \ge 0$ for every $x \in A$. Let f be a positive linear functional on A; prove that:

- (i) $f(x^*) = \overline{f(x)}$ for all $x \in A$;
- (ii) $|f(x^*y)|^2 \leq f(xx^*)f(yy^*)$ for all $x, y \in A$;
- (iii) $|f(x)|^2 \leq f(1)f(xx^*)$ for all $x \in A$;
- (iv) f is continuous with ||f|| = f(1).

Prove, conversely, that if f is a continuous linear functional on A with ||f|| = f(1) then f is positive. [N.B. You should assume, without proof, that, for every $x \in A$, $\operatorname{Sp}(x^*x) \subset \mathbb{R}^+$.]

Let $x \in A$ and let $\lambda \in \operatorname{Sp} x$; prove that there is a positive linear functional on A such that both ||f|| = 1 and $f(x) = \lambda$.

Deduce that, for every non-zero $x \in A$ there is some positive linear functional with $f(x) \neq 0$.

Paper 10