PAPER 10

BANACH ALGEBRAS

Attempt THREE questions

There are five questions in total.
The questions carry equal weight.

All Banach algebras should be taken to be over the complex field, and to be non-zero For an element x of a Banach algebra, $r(x)$ denotes the spectral radius of x.

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.
$1 \quad$ Let A be a Banach algebra with identity element 1 and given norm $\|$.$\| . Let S$ be a bounded subset of A such that $x y \in S$ whenever $x \in S$ and $y \in S$. Prove that there is a unital algebra-norm $\|.\|_{1}$ on A, that is equivalent to $\|$.$\| and is such that \|s\|_{1} \leqslant 1$ for all $s \in S$.

Define the spectrum $\operatorname{Sp} x$ of an arbitrary element $x \in A$ and state, without proof a formula that gives the spectral radius $r(x)$ in terms of the norm. (N.B. the spectral radius is here defined as $r(x)=\sup \{|\lambda|: \lambda \in \operatorname{Sp} x\}$.) Prove that if $r(x)<1$ then $\left\{x^{n}: n \geqslant 1\right\}$ is a bounded subset of A.

Let $F=\left\{x_{1}, \ldots, x_{n}\right\}$ be a finite subset of A such that $x_{i} x_{j}=x_{j} x_{i}$ for all $i, j=1, \ldots, n$ and let $\epsilon>0$. By using the result of the last paragraph, show that there is a unital algebra-norm $\|\cdot\|_{0}$ on A, equivalent to $\|\cdot\|$ and such that $\left\|x_{j}\right\|_{0}<r\left(x_{j}\right)+\epsilon$ $(j=1, \ldots, n)$.

Deduce (or prove otherwise), that if $a, b \in A$ satisfy $a b=b a$, then

$$
r(a b) \leqslant r(a) r(b) \quad \text { and } \quad r(a+b) \leqslant r(a)+r(b) .
$$

2 Let A be a Banach algebra with identity, let $x \in A$ and let U be an open neighbourhood of $\operatorname{Sp} x$ in \mathbb{C}. Prove that there is a unique continuous, unital homomorphism $\Theta_{x}: \mathcal{O}(U) \rightarrow A$ such that $\Theta_{x}(Z)=x$ (where Z is the function $Z(\lambda)=\lambda(\lambda \in U)$).

Prove also that, for every $f \in \mathcal{O}(U), \operatorname{Sp} \Theta_{x}(f)=f(\operatorname{Sp} x)$.
[Any form of the Runge approximation theorem may be quoted without proof.]
Now suppose that $\left(x_{n}\right)_{n \geqslant 1}$ is a sequence in A with $x_{n} \rightarrow x$ as $n \rightarrow \infty$. Prove that:
(a) $\operatorname{Sp} x_{n} \subset U$ for all sufficiently large n;
(b) for every $f \in \mathcal{O}(U), \Theta_{x_{n}}(f) \rightarrow \Theta_{x}(f)$ as $n \rightarrow \infty$.

Suppose, in addition, that $U=V \cup W$, where V, W are open sets with $V \cap W=\varnothing$ and with $\operatorname{Sp} x \cap V \neq \varnothing$. Prove that:
(c) $\operatorname{Sp} x_{n} \cap V \neq \varnothing$ for all sufficiently large n.

3 Let A be a Banach algebra with identity, with A not necessarily commutative. Define a primitive ideal of A. Show that every maximal two-sided ideal of A is primitive.

Define the (Jacobson) radical $J=J(A)$ of A to be the intersection of all the primitive ideals of A. Prove that:
(i) J is the intersection of all the maximal left ideals of A;
(ii) $J=\{x \in A: 1+y x$ is invertible for every $y \in A\}$;
(iii) J is the greatest ideal of A that is included in $N(A) \equiv\{x \in A: r(x)=0\}$.

What does it mean to say that A is semisimple?
Let X be a Banach space, of dimension greater than 1 , and let $B=B(X)$ be the algebra of all bounded linear operators on X. Prove that B is semisimple, but that $N(B) \neq\{0\}$. [Hint: let f be a non-zero element of X^{*} and take some non-zero $x_{0} \in X$ with $f\left(x_{0}\right)=0$. Define $T \in B(X)$ by $T(x)=f(x) x_{0}$.]

Show that $\{0\}$ is a primitive ideal of B, but that, provided X is infinite-dimensional, $\{0\}$ is not a maximal ideal.

4 (i) Let $\left(f_{n}\right)_{n \geqslant 1}$ be a decreasing sequence of non-negative, continuous real-valued functions on a compact Hausdorff space K, and define $f(x)=\lim _{n \rightarrow \infty} f_{n}(x)(x \in K)$. Prove that $\sup _{K} f_{n} \rightarrow \sup _{K} f$ as $n \rightarrow \infty$.
(ii) Let A be a Banach algebra with identity and let f be a holomorphic A-valued function on \mathbb{C}. Prove that for every $R>1$,

$$
r(f(1))^{2} \leqslant \sup _{|z|=R} r(f(z)) \sup _{|z|=R^{-1}} r(f(z))
$$

Deduce that if the function $z \mapsto r(f(z))$ is bounded on \mathbb{C} then it is constant.

5 Let A be a C^{*}-algebra (with identity); a linear functional f on A is said to be positive if $f\left(x^{*} x\right) \geqslant 0$ for every $x \in A$. Let f be a positive linear functional on A; prove that:
(i) $f\left(x^{*}\right)=\overline{f(x)}$ for all $x \in A$;
(ii) $\left|f\left(x^{*} y\right)\right|^{2} \leqslant f\left(x x^{*}\right) f\left(y y^{*}\right)$ for all $x, y \in A$;
(iii) $|f(x)|^{2} \leqslant f(1) f\left(x x^{*}\right)$ for all $x \in A$;
(iv) f is continuous with $\|f\|=f(1)$.

Prove, conversely, that if f is a continuous linear functional on A with $\|f\|=f(1)$ then f is positive. [N.B. You should assume, without proof, that, for every $x \in A, \operatorname{Sp}\left(x^{*} x\right) \subset \mathbb{R}^{+}$.]

Let $x \in A$ and let $\lambda \in \mathrm{Sp} x$; prove that there is a positive linear functional on A such that both $\|f\|=1$ and $f(x)=\lambda$.

Deduce that, for every non-zero $x \in A$ there is some positive linear functional with $f(x) \neq 0$.

