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ASYMPTOTIC STRUCTURE AND QUASIRANDOMNESS

Attempt THREE questions.

There are FOUR questions in total.

The questions carry equal weight.
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1 Let A be a set of integers, let C be a constant, and suppose that |A + A| 6 C|A|.
Prove that |2A − 2A| 6 C4|A|. [You may assume Menger’s theorem.]
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(i) State and prove Roth’s theorem on arithmetic progressions with a bound of the
form CN/ log log N .

(ii) Suppose that A is a set of integers such that |2A − 2A| 6 C|A|, and let N > C|A|
be a prime. Prove that A has a subset A′ of size at least |A|/2 that is 2-isomorphic
to a subset of ZN .

(iii) Deduce that if |A| is sufficiently large then A must contain an arithmetic progression
of length 3. [You may assume that there is a prime between C|A| and 2C|A|.]
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(i) State and prove Szemerédi’s regularity lemma.

(ii) Explain how the regularity lemma can be used to give a proof of Roth’s theorem.
[You may assume a suitable counting lemma for tripartite graphs.]
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(i) What does it mean to say that a tripartite 3-uniform hypergraph is α-quasirandom?

(ii) Let H be a quadripartite 3-uniform hypergraph with vertex sets X, Y , Z and W .
Let the densities of the subhypergraphs H(X, Y, Z), H(X, Y,W ), H(X, Z, W ) and
H(Y, Z, W ) be p, q, r and s, respectively, and suppose that these subhypergraphs
are all α-quasirandom. Prove that the number of simplices in H differs from
pqrs|X||Y ||Z||W | by at most Cα1/8|X||Y ||Z||W | for some absolute constant C.

(iii) Can you generalize the result of (ii) to prove a counting lemma for 3-uniform
hypergraphs — that is, deal with more than just simplices?
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