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1 (a) (i) Evaluate the first two terms as m ↗ 1 of the elliptic integral∫ π/2

0

1
(1−m2 sin2 θ)1/2

dθ ,

given that ∫
1

(1 + u2)1/2
du = log

(
u + (1 + u2)1/2

)
and ∫

1
sinϕ

dϕ = log
(
tan 1

2ϕ
)

.

(ii) Evaluate the first two terms as x→∞ of the integral∫ ∞

0

e−xu

(log u)2 + e−2xu
du .

(b) (i) Briefly describe the use of the Briggs-Bers technique to determine the
long-time behaviour of solutions of initial-value problems, and in particular state how
to determine whether or not a system is absolutely unstable by considering its dispersion
relation.

Consider the third-order equation

∂η

∂t
+ α

∂2η

∂x2
+ β

∂3η

∂x3
+ γη = 0 ,

where α, β, γ are complex constants. By considering solutions proportional to exp(−iωt+
ikx), derive conditions on α and β for the system to possess a finite maximum temporal
growth rate over all real k, and explain why this is important for application of the Briggs-
Bers technique. Determine necessary conditions for the occurrence of absolute instability.

(ii) The nonlinear Schrodinger (NLS) equation in one dimension is

−i
∂A

∂t
+ χ

∂2A

∂x2
− µA + δA|A|2 = 0 ,

where χ, δ and µ are real positive constants. We investigate the stability of the constant
solution of NLS by writing

A =
{(µ

δ

)1/2

+ εA1

}
exp(iεθ) ,

where A1 = A1(x, t) and θ = θ(x, t) are unknown real functions and ε � 1. By taking
terms of size O(ε), find a system of coupled equations for A1 and θ. Assuming that

θ, A1 ∝ exp(−iΩt + iKx) ,

determine the dispersion relationship between Ω and K. Comment on the stability of the
constant solution of NLS.
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2 By means of Watson’s lemma, show that the asymptotic expansion of the integral

F (z) =
∫ ∞

1

exp(−z3t3) dt

for real z � 1, is

F (z) ∼ exp(−z3)
3z3

∞∑
r=0

Γ(r + 2
3 )

Γ( 2
3 )

1
(−z)3r

.

Hence find an asymptotic expansion, including exponentially small terms, for

G(z) =
∫ 1

0

exp(−z3t3) dt .

Now suppose that z is complex. By considering contours of steepest descent, find the
asymptotic expansions of G(z) for 0 ≤ arg(z) ≤ 2π away from Stokes lines, which should
be identified. Selected contours of constant <(−z3t3)/|z3| for complex z are plotted in
figure 1 (see overleaf), together with contours of =(−z3t3)/|z3| passing through t = 0 and
t = 1.

Obtain an expression for the smoothing out of the jump in the sub-dominant term
at one of Stokes lines; confirm that your result is consistent with the asymptotic expansions
away from that Stokes lines obtained earlier.

You may quote the following results.

(a) The Borel sum of
∞∑

p=0

Γ(γ + p)eλ

λp+γ
,

for real γ ≥ 0 and <(λ) > 0, is

I(λ, γ) =
∫ ∞

0

tγ−1 exp(λ(1− t))
1− t

dt ,

where the contour of integration is assumed to pass just above the pole at t = 1.

(b) If γ � 1 and
λ ∼ γ + iµγ

1
2 + ν + . . . ,

where µ = O(1) and ν = O(1) then

I(λ, γ) ∼ iπ

(
1 + erf

(
µ√
2

))

(c)
Γ

(
1
3

)
Γ

(
2
3

)
= 2√

3
π .
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Figure 1. Contours in the complex t-plane of constant <(−z3t3)/|z3| for given
complex z (black or blue depending on whether the real part is positive or strictly
negative), plus contours of =(−z3t3)/|z3| passing through t = 0 and t = 1 (red).
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3 The function y(x) satisfies the nonlinear differential equation

ε
d2y

dx2
− y

1
2 + εk = 0 ,

where k > 0 is an order one constant, subject to the boundary conditions y(0) = 0
and y(1) = 1. In the limit ε → 0, use the method of matched asymptotic expansions
to find the leading-order solution for 0 ≤ x ≤ 1. An implicit solution is acceptable
as long as is it demonstrated that the solution satisfies any necessary matching
conditions. Sketch the solution.

Hints.

(a) Away from the boundaries there is an outer region. Near x = 0 there is a single
inner region, while near x = 1 there are two inner asymptotic regions (with the
smallest region lying between the outer region and the asymptotic inner region that
includes x = 1).

(b) The implicit solution to

1
2

(
dY

dξ

)2

− 2
3Y

3
2 + kY = 1

3k3

is given by

σ(ξ − ξ0) =
√

2k log

∣∣∣∣∣
√

k + 2Y
1
2 −

√
3k√

k + 2Y
1
2 +

√
3k

∣∣∣∣∣ +
√

6(k + 2Y
1
2 ) ,

where ξ0 is a constant and σ = ±1, with the sign being chosen as needed and/or
appropriate. Note that

(i) if |Y 1
2 − k| � 1, then σξ � −1 and

ln |Y 1
2 − k| ∼ σξ√

2k
+ . . . ;

(ii) if Y
1
2 � 1, then σξ � 1 and

Y
1
2 ∼ 1

12ξ2 + 1
6ξξ0 + . . . .

(c) For z > 0 define

ζ =
√

3
2

∫ z

1

du√
u

3
2 + c

,

where c is a constant. If c = 0, then

z
1
2 = 1

12 (ζ − ζ0)
2 where ζ0 = −2

√
3 .

while if c 6= 0 then when z � 1

z ∼ 2
√

c

3
(ζ − ζ0) where ζ0 = −

√
3

2

∫ 1

0

du√
u

3
2 + c

.
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4 (a) Consider the differential equation

d2x

dt2
+ εf(x)

dx

dt
+ x = 0 ,

subject to x = 1 and dx/dt = 0 when t = 0, where ε � 1 and f(x) is a given function.
Use the method of multiple scales to find the leading-order approximation to x(t; ε) which
is uniformly valid for t ≤ O(1/ε) when

(i) f(x) = x2 − 1,

(ii) f(x) = sin x,

(iii) f(x) = |x|.

[Hint: in (iii) you may find it useful to write

| sin τ | cos τ =
∞∑

n=0

an cos(nτ)

for some constants an.]

(b) Consider the linearised Ginsburg-Landau equation

∂η

∂t
+ U

∂η

∂x
− µη − γ

∂2η

∂x2
= 0

with µ(X) = µ0 − νX2 and other coefficients constant, where X = εx, ε � 1 and we
take ν > 0. A global mode is of the form A = a(x) exp(−iωGt), with a(x) bounded as
x → ±∞. Show, by writing a(x) = exp(Ux/2γ)b(ξ), where ξ =

√
εcx for suitable c, that

the global mode satisfies
d2b

dξ2
+ (λ− ξ2)b = 0 , (∗)

for suitable λ, to be found. By seeking a solution of (∗) in the form exp(−ξ2/2)Hn(ξ),
where Hn is a power series, show that the solutions of (∗) grow exponentially as ξ → ±∞,
unless λ = (2n + 1) for any positive integer n. Hence, determine the allowed global mode
frequencies and comment on the global stability of the system.
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5 (a) Consider the motion of a fluid along a straight channel aligned parallel to the
x-axis, with walls y = ±1 and which is infinite in the spanwise z direction. The mean flow
along the channel is U(y) in the x direction, and if we assume that unsteady disturbances
to the y component of velocity take the form v(y) exp(−iωt + ikx + ilz), then it follows
that v(y) satisfies the Orr-Sommerfeld equation

(U − c)
(

d2

dy2
− k2 − l2

)
v − d2U

dy2
v − 1

ikR

(
d2

dy2
− k2 − l2

)2

v = 0 , (∗)

where c = ω/k and R is the Reynolds number. The boundary conditions are that v and
dv/dy vanish on y = ±1.

(i) In the inviscid case R =∞, prove Rayleigh’s Theorem that a necessary condition
for the existence of temporal instability is that U(y) possesses an inflection point in the
channel.

(ii) Show that the solution of the Orr-Sommerfeld equation (*) for given values
of k, l, R can be related to the solution of the same equation but with l = 0 and with
k, R replaced by new values k′, R′ (to be determined). Use this to explain why the
Orr-Sommerfeld equation first becomes unstable to two-dimensional disturbances as the
Reynolds number is increased.

(iii) The Squire equation is

(−iω + ikU)η − 1
R

(
d2

dy2
− k2 − l2

)
η = 0 ,

subject to η(±1) = 0. Show that solutions of the Squire equation are temporally stable.
[Hint: Multiply the Squire equation by the complex conjugate of η(y) and integrate over
−1 ≤ y ≤ 1.]

(b) Consider the first-order ordinary differential equation
dq
dt

= Aq ,

where q(t) is an N -dimensional vector and A is a constant N × N matrix. The optimal
growth, G(t), is defined to be the maximum value of

‖ q(t) ‖
‖ q(0) ‖

maximised over all q(0) 6= 0. Determine lower and upper bounds on G(t) in terms of
properties of the matrix A, and calculate these bounds explicitly in the case

M =
(
− 1

R 0
1 − 2

R

)
. (∗∗)

For the choice of M given in (**), show that

exp(Mt) =
(

exp(−t/R) 0
−[exp(−2t/R)− exp(−t/R)]R exp(−2t/R)

)
.

Determine the initial conditions which lead to optimal growth at time t when (i) t � R,
(ii)t � R.

END OF PAPER
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