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ASYMPTOTIC METHODS IN FLUID DYNAMICS

Candidates may attempt ALL questions.

There are five questions in total.

The questions are of equal weight.

A distinction mark may be obtained by good answers to approximately THREE
questions.

You may not start to read the questions

printed on the subsequent pages until

instructed to do so by the Invigilator.
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(a) The integral J(λ; ε) is defined for real λ > 0 by

J(λ; ε) =
∫ 1

0

1
(λ(x− 1) + 1)2 + ε2 cos2(πx/2)

dx .

If 0 < ε � 1 calculate the leading-order asymptotic approximation of J(λ; ε) for
0 < λ < 1, λ close to 1 (where how close to one should be specified), and λ > 1.
Briefly discuss whether the approximation for λ > 1 is uniformly valid for λ� 1.

(b) In the following, the Fourier Transform is defined to be

f̃(k) =
∫ ∞

−∞
exp(−ikx)f(x)dx .

(i) Show, being careful to explain each step in your reasoning, that the Fourier
Transform of the Heaviside step function is

πδ(k) +
i
k

.

Hence, find the Fourier Transform of 1/x.

(ii) Show, by using your answer to (i), or otherwise, that the Fourier Transform of
log |x| is

− π

|k|
+ Cδ(k) ,

where C is a constant which need not be determined.

(iii) Using your answers to (i) & (ii), and quoting without proof any standard
results concerning Fourier Transforms that you require, solve for f(x) the integral
equation

−
∫ ∞

−∞

f(t)
x− t

dt = H(x− 1)−H(x + 1) .

(iv) Determine the first two terms in the large-wavenumber expansion of the Fourier
Transform of the modified Bessel function K0(|x|).

[Hint: Note that K0(z) is the solution of the equation

z2 d2K0

dz2
+ z

dK0

dz
− z2K0 = 0

such that K0(z) = −f(z) log(z) + g(z), where f and g are analytic functions, with
f(0) = 1, and such that K0(|z|)→ 0 as |z| → ∞. ]
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(i) The integral I(λ, n) is defined for real integer n and Re(λ) > 0 by

I(λ, n) =
∫ ∞

0

tn−1 exp(λ(1− t))
1− t

dt ,

where the contour of integration is assumed to pass just above the pole at t = 1.
Suppose that n� 1 and that

λ ∼ n + iµn
1
2 + ν + . . . ,

where µ = O(1) and ν = O(1). By considering ∂I
∂µ or otherwise, find the leading-

order asymptotic expansion for I(λ, n) as n→∞.

(ii) Show that, formally,

I(λ, n) ∼ exp(λ)
∞∑

r=n

Γ(r)
λr

.

(iii) The asymptotic series for the Airy function, Ai(z), when |z| � 1 and | arg(z)| < π
is given by

Ai(z) =
1

2z
1
4 π

1
2

exp
(

1
2σ
) ∞∑

r=1

Yr ,

where

Yr =
Γ(r + 1

6 )Γ(r + 5
6 )

2πσrΓ(r + 1)
and σ = − 4

3z
3
2 .

Show that

Yr →
Γ(r)
2πσr

as r →∞ .

Comment. You may quote Stirling’s asymptotic approximation for the Gamma
function

(r − 1)! = Γ(r) ∼
(

2π

r

) 1
2

rr e−r as r →∞ .

(iv) Hence show that if the asymptotic series for the Airy function is truncated at the
smallest term, say r = n, then for

arg(σ) =
φ

|σ| 12
where φ = O(1) ,

the remainder Rn is given by

Rn ∼
i exp

(
− 1

2σ
)

4z
1
4 π

1
2

(
1 + erf

(
φ

2
1
2

))
Briefly interpret this result.
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3 The function y(x) satisfies the differential equation

ε
d2y

dx2
+ xy + y2 = 0 .

If y(a) = α and y(1) = β, with 0 < a < 1, identify for what values of α and β
solutions can be found in the limit ε→ 0 on the assumption that there are no rapid
oscillations or ‘internal’ boundary layers away from the end points. Sketch your
solution[s] indicating whether there is a unique solution. Briefly discuss whether
additional solutions with internal boundary layers can be easily ruled out.

Next suppose that a = α = 0, i.e. y(0) = 0. Derive the governing equation
in the inner region near x = 0 and state the boundary conditions a solution
should satisfy. Without solving the equation exactly, discuss whether a solution
satisfying the boundary conditions is likely to exist, e.g. on the basis of linearising
the equation in the ‘intermediate matching region’ and discussing the linearised
equation’s solutions.

Comment. You may quote the result that

∫
dy√

a3 − 3ay2 − 2y3
= − 2√

3a
arctanh

(√
a− 2y

3a

)
.

Paper 76



5

4

(a) (i) Consider the differential equation

d2x

dt2
+ εc(1− x2)

dx

dt
+ x = k ,

subject to x = dx/dt = 0 when t = 0, where c, k and ε are real positive
constants with ε � 1. Use the method of multiple scales to find the leading-order
approximation to x(t; ε) which is uniformly valid for t ≤ O(1/ε).

(ii) Now consider the coupled system

d2x

dt2
+ εy(1− x2)

dx

dt
+ x = k

dy

dt
= ε(1 + x− y)

such that x = dx/dt = y = 0 when t = 0. Find the uniformly-valid leading-order
approximations for x(t; ε) and y(t; ε) when t ≤ O(1/ε).

(b) The non-dimensional equations describing the inviscid one-dimensional motion of
a gas are

∂ρ

∂t
+

∂u

∂x
+ M

∂(ρu)
∂x

= 0

(1 + Mρ)
(

∂u

∂t
+ Mu

∂u

∂x

)
+

∂p

∂x
= 0 (1)

(1 + Mγp) = (1 + Mρ)γ ,

where p, ρ and u are the unsteady pressure and density perturbation and the
velocity respectively, γ is a positive constant and M � 1 is the constant Mach
number. By writing

p(x, t;M) = p0(θ, X) + Mp1(θ, X) + .... ,

with similar expansions for p and u, where X = Mx and θ = t − x, show that p0

satisfies
∂p0

∂X
−
(

γ + 1
2

)
p0

∂p0

∂θ
= 0 , (2)

uniformly in |θ| ≤ O(M−1).

How does equation (2) change if the viscous term β∂2u/∂x2, with β = O(M), is
introduced onto the right-hand side of equation (1)?
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(a) (i) Describe the use of the Briggs-Bers technique to determine the long-time
behaviour of solutions of the one-dimensional linearised Ginzburg-Landau equation
with constant real coefficients,

Lη ≡ ∂η

∂t
+ U

∂η

∂x
− µη − γ

∂2η

∂x2
= 0 .

Find the conditions involving U, µ and γ for the occurrence of convective instability
and of absolute instability.

(ii) By taking Fourier transforms in both x and t, find the solution of

Lη = δ(x)δ(t) .

In the limit t → ∞ relate the behaviour of your solution to the conditions found
in (i) above.

(iii) In two dimensions the linearised Ginzburg-Landau equation with constant
coefficients is

∂η

∂t
+ U

∂η

∂x
+ V

∂η

∂y
− µη − γ11

∂2η

∂x2
− γ22

∂2η

∂y2
− 2γ12

∂2η

∂x∂y
= 0 ,

where U, V, µ and γij are real constants. By considering solutions of the form

η = exp(−iωt + ikx + ily) and computing the group velocity,
(∂ω

∂k
,

∂ω

∂l

)
, find a

necessary condition for the occurrence of absolute instability in the form

µ > f(U, V ) ,

where f(U, V ) is a quadratic function of U, V to be determined.

Given that the vector (U, V ) represents a mean-flow velocity whose magnitude is
fixed but whose orientation can be changed, find the minimum value of µ required
to guarantee the absence of absolute instability for any mean-flow direction.

(b) Consider the linearised Ginzburg-Landau equation in one dimension on the semi-
infinite domain x > 0, with boundary conditions A = 0 at x = 0 and A → 0 as
x→∞. The coefficients U and γ are real constants, but µ = µ0 − ελx with ε� 1,
and µ0 and λ positive real constants.

By considering a solution of the form

f(εσx) exp
(

Ux

2γ
− iωt

)
,

where the index σ > 0 and the function f are to be determined, show that the
global mode frequencies are

i
(

µ0 −
U2

4γ
+ (ε2γλ2)

1
3 zn

)
n = 1, 2, 3, ..... ,

where zn is the nth zero of the Airy function Ai(x) on the negative real axis. Hence,
deduce the condition for global instability, and compare this to the condition for
local absolute instability.

[Hint: Ai(x) is the solution of y′′ = xy which is bounded as x → ∞. Ai has a
countable number of real zeros, all negative. ]
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