
MATHEMATICAL TRIPOS Part III

Tuesday 5 June 2007 9.00 to 12.00
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ASTROPHYSICAL FLUID DYNAMICS

Attempt THREE questions.
There are FOUR questions in total.

The questions carry equal weight.

Candidates are reminded of the equations of ideal magnetohydrodynamics in the form

∂ρ

∂t
+ u · ∇ρ = −ρ∇ · u ,

∂p

∂t
+ u · ∇p = −γp∇ · u ,

ρ

(
∂u
∂t

+ u · ∇u
)

= −ρ∇Φ−∇p+
1
µ0

(∇×B)×B ,

∂B
∂t

= ∇× (u×B) ,

∇ ·B = 0 ,

∇2Φ = 4πGρ .
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1 A supernova explosion of energy E occurs at time t = 0 in an unmagnetized
polytropic ideal gas of adiabatic exponent γ. The surrounding medium is initially cold
and has non-uniform density Cr−β , where C and β are constants (with 0 < β < 3) and r
is the distance from the supernova.

(a) Explain why a self-similar spherical blast wave may be expected to occur, and deduce
that the radius R(t) of the shock front increases as a certain power of t.

(b) Write down the self-similar form of the velocity, density and pressure for 0 < r < R(t)
in terms of three undetermined dimensionless functions of ξ = r/R(t). Obtain a system
of dimensionless ordinary differential equations governing these functions.

(c) Formulate the boundary conditions on the dimensionless functions at the strong shock
front ξ = 1. [You may assume that the solutions of the Rankine–Hugoniot relations in the
rest frame of a stationary normal shock are

ρ2

ρ1
=
u1

u2
=

(γ + 1)M2
1

(γ − 1)M2
1 + 2

,

p2

p1
=

2γM2
1 − (γ − 1)
γ + 1

,

M2
2 =

(γ − 1)M2
1 + 2

2γM2
1 − (γ − 1)

,

where M = u/vs is the Mach number.]

(d) Show that special solutions exist in which the radial velocity and the density are
proportional to r for r < R(t), if

β =
7− γ
γ + 1

.

For the case γ = 5/3 express the velocity, density and pressure for this special solution in
terms of the original dimensional variables.
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2 (a) Derive the expressions

v2 = v2
a cos2 θ ,

v2 = 1
2 (v2

s + v2
a)±

[
1
4 (v2

s + v2
a)2 − v2

s v
2
a cos2 θ

]1/2
,

for the phase speeds of the Alfvén and magnetoacoustic waves in a homogeneous fluid with
a uniform magnetic field, explaining the notation used.

(b) Obtain approximate expressions for the magnetoacoustic wave speeds in the limit
vs � va, and describe the physical nature of the three wave modes in this limit. [An
expansion to first order in the small parameter v2

a/v
2
s is sufficient.]

(c) Investigate whether either of the following is an exact nonlinear solution of the
equations of ideal MHD in a compressible fluid, where a, k and va are constants:

(i) a linearly polarized Alfvén wave with

Bx = aBz cos[k(z − vat)] ,
By = 0 ,
Bz = constant ;

(ii) a circularly polarized Alfvén wave with

Bx = aBz cos[k(z − vat)] ,
By = aBz sin[k(z − vat)] ,
Bz = constant .
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3 (a) An ideal polytropic gas undergoes a steady axisymmetric outflow in the
presence of a magnetic field and a gravitational potential Φ. Using the representation
Bp = ∇ψ × ∇φ of the poloidal magnetic field in terms of a flux function ψ(R, z), where
(R,φ, z) are cylindrical polar coordinates, derive the following integrals of the outflow:

u =
k(ψ)B
ρ

+Rω(ψ) eφ ,

uφ −
Bφ

µ0k(ψ)
=
`(ψ)
R

,

s = s(ψ) ,

where s is the specific entropy.

(b) Without giving a formal derivation, explain physically why there is a further integral
of the form

1
2 |u−Rω(ψ) eφ|2 + w + Φ− 1

2 [Rω(ψ)]2 = ε(ψ) ,

where w is the specific enthalpy.

(c) Consider a particular magnetic field line that lies in the plane z = 0 and for which
the poloidal magnetic field strength varies as |Bp| = CR−2, where C is a constant.
Assume that the gravitational potential is that of a point mass M and that the enthalpy
is negligible. Assume further that the outflow passes smoothly through an Alfvén point at
R = Ra where the density is ρa. Deduce that the integrals of the outflow can be combined
in the dimensionless equation

f(x, y) = constant ,

where x = R/Ra, y = ρ/ρa,

f(x, y) =
α

2

[(
x− x−1

y − 1

)2

− x2

]
+

β

2x4y2
− 1
x
,

and α and β are constants to be determined. Without a detailed calculation, state the form
of the conditions for the flow to pass smoothly through the slow and fast magnetosonic
points.
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4 An isothermal ideal gas of sound speed cs forms a self-gravitating slab in hydrostatic
equilibrium with density ρ(z), where (x, y, z) are Cartesian coordinates.

(a) Verify that
ρ ∝ sech2

( z

H

)
,

and relate the scaleheight H to the surface density

Σ =
∫ ∞

−∞
ρdz .

(b) Assuming that the perturbations are also isothermal, derive the linearized equations
governing displacements of the form

Re
[
ξ(z) eikx−iωt

]
,

where k is a real wavenumber. Show that ω2 is real for disturbances satisfying appropriate
conditions as |z| → ∞.

(c) For a marginally stable mode with ω2 = 0, derive the associated Legendre equation

d
dτ

[
(1− τ2)

dΦ′

dτ

]
+

[
2− ν2

(1− τ2)

]
Φ′ = 0 ,

where τ = tanh(z/H), ν = kH and Φ′ is the Eulerian perturbation of the gravitational
potential. Verify that two solutions of this equation are(

1 + τ

1− τ

)ν/2

(ν − τ) and
(

1− τ
1 + τ

)ν/2

(ν + τ) .

Deduce that the marginally stable mode has |k| = 1/H and Φ′ ∝ sech(z/H). Would you
expect the unstable modes to have wavelengths greater or less than 2πH?

END OF PAPER
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