MATHEMATICAL TRIPOS Part III

Tuesday 14 June, 2005 9 to 12

PAPER 71

ASTROPHYSICAL FLUID DYNAMICS

Attempt **THREE** questions. There are **FOUR** questions in total. The questions cary equal weight.

Candidates may bring their notebooks into the examination. The following equations may be assumed.

$$\frac{D\rho}{Dt} + \rho \operatorname{div} u = 0$$

$$\rho \frac{Du}{Dt} = -\nabla p - \rho \nabla \Phi + j \wedge B$$

$$\rho \frac{De}{Dt} = \frac{p}{\rho} \frac{D\rho}{Dt} + \operatorname{div} (\lambda \nabla T) + \epsilon$$

$$\operatorname{div} B = 0; \ j = \mu_0^{-1} \operatorname{curl} B$$

$$\nabla^2 \Phi = 4\pi G\rho$$

$$\frac{\partial B}{\partial t} = \operatorname{curl} (u \wedge B)$$

$$p = (\gamma - 1)\rho e = \frac{\mathcal{R}}{\mu}\rho T$$

STATIONERY REQUIREMENTS Cover sheet SPECIAL REQUIREMENTS

Cover sheet Treasury Tag Script paper

> You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

None

1 A plane shock wave lies (in the frame of the shock) in the plane x = 0. The flow velocity is in the x-direction and of magnitude $U_L(U_R)$ to the left (right) of the shock, where left (right) corresponds to the half-space x < 0 (x > 0). In the same notation, the densities are $\rho_L(\rho_R)$, the pressures $p_L(p_R)$ and the energy densities $e_L(e_R)$. Assuming that the perfect gas law $p = (\gamma - 1)\rho e$ applies on each side of the shock use the Rankine-Hugoniot relations to show that

$$\frac{\rho_R}{\rho_L} = \frac{(\gamma + 1)M_L^2}{(\gamma - 1)M_L^2 + 2},$$

where M_L is the Mach number in x < 0.

Deduce that $\rho_R > \rho_L \iff M_L^2 > 1$, and hence that the flow must be supersonic on one side of the shock and subsonic on the other.

Show further that

$$\left(\frac{2}{\gamma+1}\right)u_L^2 + u_L\left(u_R - u_L\right) - \left(\frac{2\gamma}{\gamma+1}\right)\frac{p_L}{\rho_L} = 0, \qquad (*)$$

and that

$$\left(\frac{2}{\gamma+1}\right)\frac{\rho_L u_L^2}{p_L} - \frac{p_R}{p_L} - \frac{\gamma-1}{\gamma+1} = 0.$$
 (**)

Now consider a plane shock lying in the plane x = X(t) < 0 and impinging on a stationary solid wall at x = 0. Prior to the passage of the shock the gas is at rest with pressure p_0 and density ρ_0 . As the shock moves towards the wall with steady velocity $dX/dt = U_+ > 0$, the gas behind the shock has velocity $u_s (0 < u_s < U_+)$, pressure p_s and density ρ_s . After the shock has rebounded from the wall it moves with velocity $dx/dt = -U_- < 0$, into the already once-shocked gas. The gas between the shock and the wall is now stationary and has pressure p_1 and density ρ_1 . Use (*) to both the pread post-rebound configurations to show that $(u_s + U_-)$ and $(u_s - U_+)$ satisfy the same quadratic equation.

Deduce that

$$(u_s - U_+)(u_s + U_-) = -\gamma p_s / \rho_s \,. \tag{(\dagger)}$$

Similarly apply (**) to both pre- and post-rebound configurations, and hence, using (†) obtain a relationship between p_1/p_s and p_0/p_s , independent of the velocities.

In the case of a strong shock $(p_0 \ll p_s)$ show that

$$\frac{p_1}{p_s} = \frac{3\gamma - 1}{\gamma - 1}$$

2 Consider a fluid at rest with pressure distribution $p(\mathbf{r})$, density distribution $\rho(\mathbf{r})$ in a fixed gravitational field $\mathbf{g} = -\nabla \Phi(\mathbf{r})$ and permeated by a magnetic field $\mathbf{B}(\mathbf{r})$. The configuration undergoes a small oscillatory perturbation with displacement vector $\boldsymbol{\xi}(\mathbf{r})e^{i\sigma t}$, and with div $\boldsymbol{\xi} = 0$. If the perturbation to the magnetic field is $\mathbf{b}(\mathbf{r})e^{i\sigma t}$, show that

$$b_i = B_j \frac{\partial \xi_i}{\partial x_j} - \xi_j \frac{\partial B_i}{\partial x_j},$$

and deduce that $\operatorname{div} \mathbf{b} = 0$.

If the density perturbation is $\rho'(\mathbf{r})e^{i\sigma t}$, show that $\rho' = -\boldsymbol{\xi}.\nabla\rho$.

Assuming (without proof) that all surface integrals vanish when integrating by parts show that

$$\begin{aligned} \sigma^2 & \int_V \rho \ \xi_i^* \xi_i dV = \int_V \xi_i^* \xi_j \frac{\partial^2}{\partial x_i \partial x_j} \left[p + \frac{1}{2\mu_0} B^2 \right] dV \\ & + \int_V \rho \ \xi_i^* \xi_j \frac{\partial^2 \Phi}{\partial x_i \partial x_j} dV \\ & + \frac{1}{\mu_0} \int_V \left(B_j \frac{\partial \xi_i^*}{\partial x_j} \right) \left(B_k \frac{\partial \xi_i}{\partial x_k} \right) dV \end{aligned}$$

and hence that σ^2 is real.

Now consider a particular configuration in which the fluid is vertically stratified p(z), $\rho(z)$ in a constant gravitational field $\mathbf{g} = (0, 0, -g)$, with g > 0, and with a horizontal magnetic field $\mathbf{B} = (B(z), 0, 0)$. Write down the equilibrium equation for this configuration.

By considering the perturbation $\boldsymbol{\xi} = (0, 0, \sin ky)$ in the above expression comment on how stability depends on the sign of $\partial \rho / \partial z$.

Comment also on the stability properties of perturbations of the form $\pmb{\xi}=~(0,0,\sin kx).$

[You may assume that

 $\operatorname{curl}(\mathbf{a} \wedge \mathbf{b}) = \mathbf{a} \operatorname{div} \mathbf{b} - \mathbf{b} \operatorname{div} \mathbf{a} + (\mathbf{b} \cdot \nabla) \mathbf{a} - (\mathbf{a} \cdot \nabla) \mathbf{b}$.]

3 The interstellar medium is modelled as a perfect gas subject to cooling per unit volume at the rate $\epsilon(\rho, T) = -\rho^2 \Lambda(T)$, and with thermal conductivity $\lambda(T) = \lambda_0 T^{\alpha}$, where λ_0 is a constant and $\alpha > 0$. Gravity is neglected. Explain briefly the circumstances for which it is reasonable to assume that the pressure remains uniform, i.e. $\nabla p = 0$.

In this case show that a planar one-dimensional flow obeys the equation

$$\frac{1}{\gamma - 1}\frac{\partial p}{\partial t} + \frac{\gamma}{\gamma - 1}p\frac{\partial v}{\partial x} + \rho^2\Lambda - \frac{\partial}{\partial x}\left(\lambda\frac{\partial T}{\partial x}\right) = 0\,,$$

where v is the velocity in the x-direction.

Show further that if the flow remains at constant pressure then

$$\frac{\partial T}{\partial t} + v \frac{\partial T}{\partial x} + \left(\frac{\gamma - 1}{\gamma}\right) \left(\frac{\mu}{\mathcal{R}}\right)^2 p \frac{\Lambda(T)}{T} \\ - \frac{(\gamma - 1)}{\gamma} \frac{\lambda_0 T}{p} \frac{\partial}{\partial x} \left(T^\alpha \frac{\partial T}{\partial x}\right) = 0.$$

Using the Lagrangian variable

$$m(x,t) = \int_0^x \rho(x,t) dx,$$

and an appropriately scaled time $\tau = Ct$, where constant C is to be determined, show that this equation can be written in the form

$$\frac{\partial T}{\partial \tau} + \frac{\Lambda(T)}{T} - \lambda_0 \frac{\partial}{\partial m} \left(T^{\alpha - 1} \frac{\partial T}{\partial m} \right) = 0.$$

At time t = 0, gas fills the half space x > 0 and has uniform temperature $T = T_0$. The region x < 0 contains cold (T = 0) infinitely dense gas which does not move but cools infinitely fast. The gas in x > 0 cools only by thermal conduction (i.e. $\Lambda = 0$ if T > 0). Explain why it is reasonable to seek a similarity solution of the form

$$T(m,\tau) = T_0 f(\xi),$$

with similarity variable $\xi = m/(\lambda_0 T_0^{\alpha-1} \tau)^{\frac{1}{2}}$, and write down appropriate boundary conditions for $f(\xi)$ at $\xi = 0$ and as $\xi \to \infty$.

If $\lambda(T) = \lambda_0 T$, where λ_0 is a constant, find the function $f(\xi)$ in terms of the function erf $(z) = \frac{2}{\sqrt{\pi}} \int_0^z e^{-s^2} ds$, and sketch the resulting solution $T(m, \tau)$, indicating the behaviour as τ increases.

Show that the rate L at which energy is radiated by the gas at $x \leq 0$ varies as $L \propto t^{-k}$, where k is to be determined.

[Hint: You may assume $\operatorname{erf}(\infty) = 1$].

4 An infinite cylinder $(0 \leq R \leq R_0)$ of incompressible fluid with uniform density ρ_0 rotates about the R = 0 axis with velocity $\mathbf{u}_0 = (0, R\Omega(R), 0)$, with $\Omega(R) = kR$ where k is a constant.

The fluid is self-gravitating. Show that if the central pressure $p(R = 0) = \pi^2 G^2 \rho_0^3 / k^2$ then the radius is $R_0 = (2\pi G \rho_0)^{1/2} / k$, and the effective surface gravity is zero.

The fluid is subject to small perturbations so that the velocity is $\mathbf{u}_0 + \mathbf{u}$, where \mathbf{u} is of the form $\mathbf{u} \propto (u_R(R), u_{\phi}(R), 0) \exp(i\omega t + im\phi)$.

Show that the perturbation equations are

$$\begin{split} &i\sigma u_R - 2\Omega u_\phi = -\frac{\partial W}{\partial R},\\ &3\Omega u_R + i\sigma u_\phi = -\frac{imW}{R},\\ &\frac{du_R}{dR} + \frac{u_R}{R} + im\frac{u_\phi}{R} = 0\,, \end{split}$$

where $\sigma = \omega + m\Omega(R)$ and $W = \frac{p'}{\rho} + \Phi'$.

Show that these equations can be reduced to

$$\frac{d^2 u_R}{dR^2} + \frac{3}{R} \frac{d u_R}{dR} + \frac{u_R}{R^2} \left\{ 1 - m^2 - \frac{3m\Omega}{\sigma} \right\} = 0.$$

Now consider the case m = 1. Show that a solution to this equation is

$$u_R = 1 + \frac{kR}{\omega} \,.$$

Assuming that this is the only solution which is regular at R = 0, show that the oscillation frequencies obey the equation $\omega^2 = 0$. Give a physical explanation of this result.

[You may assume that in cylindrical polars

$$\nabla^2 \Phi = \frac{1}{R} \frac{\partial}{\partial R} \left(R \frac{\partial \Phi}{\partial R} \right) + \frac{1}{R^2} \frac{\partial^2 \Phi}{\partial \phi^2} + \frac{\partial^2 \Phi}{\partial z^2} \,,$$

and that the equations of motion are

$$\begin{aligned} \frac{\partial v_R}{\partial t} + \mathbf{v}. \left(\nabla v_R\right) - \frac{v_{\phi}^2}{R} &= -\frac{1}{\rho} \frac{\partial p}{\partial R} - \frac{\partial \Phi}{\partial R} \\ \frac{\partial v_{\phi}}{\partial t} + \mathbf{v}. \left(\nabla v_{\phi}\right) + \frac{v_R v_{\phi}}{R} &= -\frac{1}{\rho R} \frac{\partial p}{\partial \phi} - \frac{1}{R} \frac{\partial \Phi}{\partial \phi} \,. \end{aligned}$$

END OF PAPER