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ASTROPHYSICAL FLUID DYNAMICS

Attempt THREE questions.
There are FOUR questions in total.

The questions cary equal weight.

Candidates may bring their notebooks into the examination. The following equations
may be assumed.

Dρ

Dt
+ ρ div u = 0

ρ
Du

Dt
= −∇p− ρ∇Φ + j ∧B

ρ
De

Dt
=

p

ρ

Dρ

Dt
+ div (λ∇T ) + ε

div B = 0; j = µ−1
0 curlB

∇2Φ = 4πGρ

∂B

∂t
= curl (u ∧B)

p = (γ − 1)ρe =
R
µ

ρT
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1 A plane shock wave lies (in the frame of the shock) in the plane x = 0. The flow
velocity is in the x-direction and of magnitude UL (UR) to the left (right) of the shock,
where left (right) corresponds to the half-space x < 0 (x > 0). In the same notation, the
densities are ρL (ρR), the pressures pL (pR) and the energy densities eL (eR). Assuming
that the perfect gas law p = (γ − 1)ρe applies on each side of the shock use the Rankine-
Hugoniot relations to show that

ρR

ρL
=

(γ + 1)M2
L

(γ − 1)M2
L + 2

,

where ML is the Mach number in x < 0.

Deduce that ρR > ρL ⇐⇒M2
L > 1, and hence that the flow must be supersonic on

one side of the shock and subsonic on the other.

Show further that(
2

γ + 1

)
u2

L + uL (uR − uL)−
(

2γ

γ + 1

)
pL

ρL
= 0 , (∗)

and that (
2

γ + 1

)
ρLu2

L

pL
− pR

pL
− γ − 1

γ + 1
= 0 . (∗∗)

Now consider a plane shock lying in the plane x = X(t) < 0 and impinging on a
stationary solid wall at x = 0. Prior to the passage of the shock the gas is at rest with
pressure p0 and density ρ0. As the shock moves towards the wall with steady velocity
dX/dt = U+ > 0, the gas behind the shock has velocity us (0 < us < U+), pressure ps

and density ρs. After the shock has rebounded from the wall it moves with velocity
dx/dt = −U− < 0, into the already once-shocked gas. The gas between the shock and
the wall is now stationary and has pressure p1 and density ρ1. Use (*) to both the pre-
and post-rebound configurations to show that (us + U−) and (us − U+) satisfy the same
quadratic equation.

Deduce that
(us − U+) (us + U−) = −γps/ρs . (†)

Similarly apply (**) to both pre- and post-rebound configurations, and hence, using (†)
obtain a relationship between p1/ps and p0/ps, independent of the velocities.

In the case of a strong shock (p0 � ps) show that

p1

ps
=

3γ − 1
γ − 1

.
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2 Consider a fluid at rest with pressure distribution p(r), density distribution ρ(r)
in a fixed gravitational field g = −∇Φ(r) and permeated by a magnetic field B(r). The
configuration undergoes a small oscillatory perturbation with displacement vector ξ(r)eiσt,
and with div ξ = 0. If the perturbation to the magnetic field is b(r)eiσt, show that

bi = Bj
∂ξi

∂xj
− ξj

∂Bi

∂xj
,

and deduce that div b = 0.

If the density perturbation is ρ′(r)eiσt, show that ρ′ = −ξ.∇ρ.

Assuming (without proof) that all surface integrals vanish when integrating by
parts show that

σ2

∫
V

ρ ξ∗i ξidV =
∫

V

ξ∗i ξj
∂2

∂xi∂xj

[
p +

1
2µ0

B2

]
dV

+
∫

V

ρ ξ∗i ξj
∂2Φ

∂xi∂xj
dV

+
1
µ0

∫
V

(
Bj

∂ξ∗i
∂xj

) (
Bk

∂ξi

∂xk

)
dV

and hence that σ2 is real.

Now consider a particular configuration in which the fluid is vertically stratified
p(z), ρ(z) in a constant gravitational field g = (0, 0,−g), with g > 0, and with a horizontal
magnetic field B = (B(z), 0, 0). Write down the equilibrium equation for this configuration.

By considering the perturbation ξ = (0, 0, sin ky) in the above expression comment
on how stability depends on the sign of ∂ρ/∂z.

Comment also on the stability properties of perturbations of the form
ξ = (0, 0, sin kx).

[You may assume that

curl(a ∧ b) = a div b− b div a + (b.∇)a− (a.∇)b .]
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3 The interstellar medium is modelled as a perfect gas subject to cooling per unit
volume at the rate ε (ρ, T ) = −ρ2Λ(T ), and with thermal conductivity λ(T ) = λ0T

α,
where λ0 is a constant and α > 0. Gravity is neglected. Explain briefly the circumstances
for which it is reasonable to assume that the pressure remains uniform, i.e.∇p = 0.

In this case show that a planar one-dimensional flow obeys the equation

1
γ − 1

∂p

∂t
+

γ

γ − 1
p
∂v

∂x
+ ρ2Λ− ∂

∂x

(
λ

∂T

∂x

)
= 0 ,

where v is the velocity in the x-direction.

Show further that if the flow remains at constant pressure then

∂T

∂t
+ v

∂T

∂x
+

(
γ − 1

γ

) ( µ

R

)2

p
Λ(T )

T

− (γ − 1)
γ

λ0T

p

∂

∂x

(
Tα ∂T

∂x

)
= 0 .

Using the Lagrangian variable

m(x, t) =
∫ x

0

ρ(x, t)dx,

and an appropriately scaled time τ = Ct, where constant C is to be determined, show
that this equation can be written in the form

∂T

∂τ
+

Λ(T )
T

− λ0
∂

∂m

(
Tα−1 ∂T

∂m

)
= 0 .

At time t = 0, gas fills the half space x > 0 and has uniform temperature T = T0.
The region x < 0 contains cold (T = 0) infinitely dense gas which does not move but cools
infinitely fast. The gas in x > 0 cools only by thermal conduction (i.e. Λ = 0 if T > 0).
Explain why it is reasonable to seek a similarity solution of the form

T (m, τ) = T0f(ξ),

with similarity variable ξ = m/
(
λ0T

α−1
0 τ

) 1
2 , and write down appropriate boundary

conditions for f(ξ) at ξ = 0 and as ξ →∞.

If λ(T ) = λ0T , where λ0 is a constant, find the function f(ξ) in terms of the
function erf (z) = 2√

π

∫ z

0
e−s2

ds, and sketch the resulting solution T (m, τ), indicating the
behaviour as τ increases.

Show that the rate L at which energy is radiated by the gas at x 6 0 varies as
L ∝ t−k, where k is to be determined.

[Hint: You may assume erf (∞) = 1].
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4 An infinite cylinder (0 6 R 6 R0) of incompressible fluid with uniform density ρ0

rotates about the R = 0 axis with velocity u0 = (0, RΩ(R), 0), with Ω(R) = kR where k
is a constant.

The fluid is self-gravitating. Show that if the central pressure p(R = 0) =
π2G2ρ3

0/k2 then the radius is R0 = (2πGρ0)1/2/k, and the effective surface gravity is
zero.

The fluid is subject to small perturbations so that the velocity is u0 + u, where u
is of the form u ∝ (uR(R), uφ(R), 0) exp(iωt + imφ).

Show that the perturbation equations are

iσuR − 2Ωuφ = −∂W

∂R
,

3ΩuR + iσuφ = − imW

R
,

duR

dR
+

uR

R
+ im

uφ

R
= 0 ,

where σ = ω + mΩ(R) and W =
p′

ρ
+ Φ′.

Show that these equations can be reduced to

d2uR

dR2
+

3
R

duR

dR
+

uR

R2

{
1−m2 − 3mΩ

σ

}
= 0 .

Now consider the case m = 1. Show that a solution to this equation is

uR = 1 +
kR

ω
.

Assuming that this is the only solution which is regular at R = 0, show that the
oscillation frequencies obey the equation ω2 = 0. Give a physical explanation of this
result.

[You may assume that in cylindrical polars

∇2Φ =
1
R

∂

∂R

(
R

∂Φ
∂R

)
+

1
R2

∂2Φ
∂φ2

+
∂2Φ
∂z2

,

and that the equations of motion are

∂vR

∂t
+ v. (∇vR)−

v2
φ

R
= −1

ρ

∂p

∂R
− ∂Φ

∂R

∂vφ

∂t
+ v. (∇vφ) +

vRvφ

R
= − 1

ρR

∂p

∂φ
− 1

R

∂Φ
∂φ

.]
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