PAPER 64

ASTROPHYSICAL FLUID DYNAMICS

Attempt THREE questions

There are four questions in total.
The questions carry equal weight.

Candidates may bring their notebooks into the examination. The following equations may be assumed.

$$
\begin{gathered}
\frac{D \rho}{D t}+\rho \operatorname{div} \mathbf{u}=0 \\
\rho \frac{D \mathbf{u}}{D t}=-\nabla p-\rho \nabla \Phi+\mathbf{j} \wedge \mathbf{B} \\
\rho \frac{D e}{D t}=\frac{p}{\rho} \frac{D \rho}{D t}+\operatorname{div}(\lambda \nabla T)+\epsilon \\
\operatorname{div} \mathbf{B}=0 ; \mathbf{j}=\mu_{0}^{-1} \operatorname{curl} \mathbf{B} \\
\nabla^{2} \Phi=4 \pi G \rho \\
\frac{\partial \mathbf{B}}{\partial t}=\operatorname{curl}(\mathbf{u} \wedge \mathbf{B}) \\
p=(\gamma-1) \rho e=\frac{\mathcal{R}}{\mu} \rho T
\end{gathered}
$$

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1 A fluid flow with radial velocity $u(r)$ and density $\rho(r)$ represents the steady, spherically symmetric accretion of an isentropic fluid from a surrounding medium of uniform density ρ_{∞} onto a gravitating point mass M centred at the origin $(r=0)$. Show that $u(r)$ and the adiabatic sound speed $c(r)$ obey the equation

$$
\frac{1}{u} \frac{d u}{d r}=\frac{1}{r} \cdot \frac{G M / r-2 c^{2}}{c^{2}-u^{2}}
$$

and find the corresponding equation for $d c / d r$.
Show that at the radius r at which the flow is trans-sonic, the velocity is given by $u^{2}=G M / 2 r$.

Verify that at large radii the equations permit a solution of the form $u \rightarrow 0, \rho \rightarrow \rho_{\infty}$ as $r \rightarrow \infty$.

Verify that at small radii the equations permit a solution of the form $u^{2} \sim 2 G M / r$ and $u^{2} \gg c^{2}$ as $r \rightarrow 0$, provided that the ratio of specific heat, γ is such that $\gamma<\gamma_{\text {crit }}$, where the value of $\gamma_{\text {crit }}$ is to be determined.

A strongly magnetised star, radius R_{*}, has a dipole field of the form $\mathbf{B}=\nabla \psi$, where, using cylindrical polar coordinates $(R, \phi, z), \psi \propto z /\left(R^{2}+z^{2}\right)^{3 / 2}$. Bondi-like accretion is taking place in an axisymmetric fashion along the magnetic field lines onto a small circle of radius $a\left(\ll R_{*}\right)$ at the magnetic pole. Show that the cross-sectional area of the flow is approximately $A=\pi a^{2}\left(r / R_{*}\right)^{3}$, for $A \ll R_{*}^{2}$.

If the magnetic field is so strong that it remains exactly dipolar, show that it exerts no force on the fluid.

In this case find the corresponding value of $\gamma_{\text {crit }}$ which allows supersonic flow onto the star.

2 A static, gaseous plane-parallel atmosphere rests on a fixed base at $z=0$ and is subject to a fixed gravitational field $\mathbf{g}=(0,0,-g(z))$ where $g(z)=\Omega^{2} z$, and Ω is a constant. The atmosphere is isothermal, with (isothermal) sound speed c_{s}. Show that the density structure is of the form

$$
\rho(z)=\rho_{0} \exp \left(-z^{2} / 2 H^{2}\right) \quad(0 \leqslant z<\infty)
$$

where ρ_{0} is the density at $z=0$, and H is a constant.
The atmosphere is subject to small adiabatic velocity perturbations of the form $\mathbf{u}=\left(0,0, w(z) e^{i \sigma t}\right)$, where σ is the oscillation frequency. What kind of modes would you expect to find in such an atmosphere and what kind of modes does this perturbation represent?

Show that $w(z)$ obeys the equation

$$
\frac{d^{2} w}{d z^{2}}-\frac{z}{H^{2}} \frac{d w}{d z}+\frac{1}{\gamma}\left(\frac{\sigma^{2}}{c_{s}^{2}}-\frac{1}{H^{2}}\right) w=0
$$

where γ is the usual ratio of specific heats.
By considering a series solution about $z=0$, or otherwise, show that the oscillation modes $w_{n}(z)$ with finite kinetic energy $E=\int_{0}^{\infty} \frac{1}{2} \rho w^{2} d z$ take the form of polynomials of degree $2 n+1(n=0,1,2, \ldots)$ and find the corresponding mode frequencies σ_{n}.

3 A uniform density, incompressible fluid contains a bounded shear layer with velocity field, in Cartesian coordinates, of the form $\mathbf{U}_{0}=(U(z), 0,0)$, where

$$
U(z)= \begin{cases}U_{0} & z \geqslant d \\ (z / d) U_{0} & |z|<d \\ -U_{o} & z \leqslant-d\end{cases}
$$

It is subject to a perturbation of the form

$$
\mathbf{u}(x, z, t)=(u(z), 0, w(z)) \exp [i k(x-c t)],
$$

and

$$
p^{\prime}(x, z, t)=p^{\prime}(z) \exp [i k(x-c t)],
$$

where k is real and $k>0$. Obtain an equation for w and show that an appropriate solution is of the form

$$
w(z)= \begin{cases}A \exp [-k(z-d)] & z \geqslant d \\ B \exp [-k(z-d)]+C \exp [k(z+d)] & |z|<d \\ D \exp [k(z+d)] & z \leqslant-d\end{cases}
$$

where A, B, C and D are constants.
Explain why the quantity

$$
\left[(c-U) \frac{d w}{d z}+\frac{d U}{d z} w\right]
$$

is continuous at $z= \pm d$.
Hence, or otherwise, show that

$$
\left(\frac{c}{U_{0}}\right)^{2}=\frac{1}{4 \alpha^{2}}\left\{(2 \alpha-1)^{2}-e^{-4 \alpha}\right\}
$$

where $\alpha=k d$.
Deduce that disturbances with wavelengths such that $0<\alpha<\alpha_{s}$ are unstable for some α_{s} in the range $\left(\frac{1}{2}<\alpha_{s}<1\right)$, and give a physical interpretation of this result.

4 An incompressible fluid of uniform density ρ is rotating uniformly with angular velocity Ω inside a rigid smooth sphere of radius r_{0}. Find the pressure distribution in the fluid.

The flow undergoes small oscillations such that, for example, the Eulerian pressure perturbation is of the form

$$
p^{\prime}=p^{\prime}(R, z) \exp \{i(\sigma t+m \phi)\},
$$

where (R, ϕ, z) are cylindrical polar coordinates, m is the azimuthal wave number and σ is the oscillation frequency. Show that $W \equiv p^{\prime} / \rho$ satisfies the equation

$$
\frac{1}{R} \frac{\partial}{\partial R}\left(R \frac{\partial W}{\partial R}\right)-\frac{m^{2} W}{R^{2}}+\left(1-\frac{4 \Omega^{2}}{\bar{\sigma}^{2}}\right) \frac{\partial^{2} W}{d z^{2}}=0
$$

where $\bar{\sigma}=\sigma+m \Omega$.
Derive an appropriate boundary condition for W on the sphere $r=r_{0}$.
Show that there is an axisymmetric oscillation mode of the form

$$
W=z\left(A R^{2}+B z^{2}+C\right),
$$

where A, B and C are constants, and find the corresponding oscillation frequency.
[Note: the equations of motion may be assumed to be

$$
\begin{gathered}
\frac{\partial u_{R}}{\partial t}+\mathbf{u} \cdot\left(\nabla u_{R}\right)-\frac{u_{\phi}^{2}}{R}=-\frac{1}{\rho} \frac{\partial p}{\partial R} \\
\frac{\partial u_{\phi}}{\partial t}+\mathbf{u} \cdot\left(\nabla u_{\phi}\right)+\frac{u_{R} u_{\phi}}{R}=-\frac{1}{\rho R} \frac{\partial p}{\partial \phi} \\
\left.\frac{\partial u_{z}}{\partial t}+\mathbf{u} \cdot\left(\nabla u_{z}\right)=-\frac{1}{\rho} \frac{\partial p}{\partial z}\right]
\end{gathered}
$$

