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1 The expansion factor R(t) of a homogeneous flat Newtonian universe of density
ρ(t) and pressure p(t), with p = Kργ , satisfies Ṙ = 2(9t20R)−1/2, with R(t0) = 1, where
K and the adiabatic exponent γ are constants and 4 < 3γ < 5. Consider the universe to
suffer a small adiabatic density perturbation ρ′(x, t) = <{ε(t)ρ(t) exp(iR−1k.x)}. From
the differential satisfied by ε, establish the equation

d2ε

dt2
+

4
3t

dε
dt

+
(

Λ2

t2γ−2/3
− 2

3t2

)
ε = 0,

where Λ = kt
γ−1/3
0 c(t0), k = |k| and c(t) is the adiabatic sound speed. Hence show that

ε = t−1/6

[
AJ−λ

(
Λ
νtν

)
+BJλ

(
Λ
νtν

)]
,

where A and B are constants, depending on the initial conditions, and λ and ν are
constants, depending on γ, whose values you should determine.

Demonstrate that if t is small, the perturbation oscillates with an amplitude that
decreases with time, but that if t is large the perturbation grows in proportion to t2/3.
Show that the condition for growth is that

ck

R
.

√
6πνGρ.

Interpret this condition.
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2 A stellar cluster is composed of a central massive object of mass Mc and a number
of lighter stars which may be considered to be moving with random velocities v such that
statistically their kinetic energies are in balance with their gravitational potential energies:
1
2v

2 ' GMc/R, where R is distance from the centre of the cluster. The cluster is accreting
gas (formally from being at rest at infinite distance from the cluster) at a constant rate
A.

Argue that if for the purpose of computing the velocity of infalling gas in the
cluster when it is far from any particular star (‘far’ is where the gravitational pull of that
particular star is much less than that of the central massive object) the total gravitational
potential of all the stars can be ignored compared with that of the central massive object,
then the typical relative velocity V of the gas relative to a typical star (when it is far from
that star) is proportional to R−1/2. How does the gas density ρ vary with R?

Each star accretes some of the gas at a rate determined by the Bondi-Hoyle formula
Ṁ = 4πG2M2V −3ρ, where M is the mass of the star. The remaining gas is accreted by
the central object, whose increase of mass may be neglected. Establish the equation

Ṁ = ΛMαRβ ,

where Λ, α and β are constants. Hence obtain

M =
M0

1− λM0t
,

where M0 is the initial value of M and λ is independent of time t.

The number of stars dN = F (M)dM with masses between M and M+dM at time
t is evidently the same as F0(M0)dM0, the number of stars with masses between M0 and
M0 + dM0 at t = 0. Deduce that

F (M) =
(
M0

M

)2

F0

(
M

1 + λMt

)
,

and deduce that if there is initially a small range of stellar masses the asymptotic limit of
the mass spectrum approximately satisfies

dN ∝M−2dM

over a wider range of M .

Discuss the limitations of the assumptions adopted to obtain this result.
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3 The outer layers of a star may be approximated as being plane parallel, in
hydrostatic support under constant gravitational accelaration g. Consider the star to
undergo small-amplitude adiabatic oscillations proportional to ei(k.x−ωt). Write down the
differential equations governing the vertical component ξ(z) of the displacement amplitude
and the Lagrangian pressure perturbation δp(z), in the Cowling approximation, where k
is a constant horizontal wavenumber and z is measured downwards. Confirm that the
equations admit the f-mode solution with frequency satisfying ω2 = gk, where k = |k|.
Write down the form of eigenfunctions in this case.

The displacement amplitude of the pure f mode diverges as z → −∞; consequently,
whatever the amplitude of the mode, it must be nonlinear high in the atmosphere and
cannot sustain its pure linear form. However, there is an interfacial mode which resembles
the f mode deep in a (late-type) star but deviates from it in and above the chromosphere,
where temperature (and hence sound speed c) increases rapidly, and consequently density
decreases, with height. For that mode ξ → 0 as z → −∞. In order to obtain an
approximation to this mode it is useful to consider two separate expansions above and
below some fiducial level z = z0 situated immediately above the chromosphere:

For z > z0, the mode resembles the pure f mode. Accordingly, write

ξ = e−k(z−z0+εφ), δp = εfξ, ω2/gk = 1− ε,

where ε is a small parameter which characterizes the ratio of the densities ρ above and
below the chromosphere, and where φ(z) and f(z) may be considered, if you like, to be
expanded in powers of ε. It is convenient to insist that φ(z0) = 0. Why has δp been taken
to be O(ε)? Write down the differential equations satisfied by φ and f , to leading order
in ε, and hence show that

f(z) ' −2gke2k(z−z0)

∫ ∞

z

e−2k(z′−z0)ρ(z′) dz′.

For z < z0, where ρ is small, set ρ = ερ̂ and c2 = ε−1ĉ2, and write

δp = εAek(z−z0+εφ) ≡ εψ, ξ = µψ,

in which φ and µ may be considered to be expanded in powers of ε. Once again, obtain an
approximation, to leading order in ε, to the solution, and hence, by applying continuity
conditions at z = z0, establish that

ε−1 ' 2k2

∫ z0

−∞
e2k(z−z0)ρ−1(z)dz

∫ ∞

z0

e−2k(z−z0)ρ(z) dz.

State any conditions you consider should be satisfied in order for this approximation
to be valid.
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4 The equation of conservation of momentum governing spherically symmetrical
motion of a star may be written

∂p

∂m
+

1
4πr2

∂2r

∂t2
= − Gm

4πr4
,

where m is the mass enclosed in the sphere of radius r and the time derivative is taken
at constant m. Show that the linearized equation relating the Lagrangian pressure
perturbation δp(r)e−iωt to the displacement δr = rξ(r)e−iωt may be written

dδp
dm

− ω2ξ

4πr
− Gmξ

πr4
= 0,

and that the Lagrangian density perturbation δρ(r)e−iωt satisfies

δρ = −ρ
(
r
dξ
dr

+ 3ξ
)
≡ −ρχ.

Hence show that adiabatic perturbations satisfy

d
dr

[
γp

(
r
dξ
dr

+ 3ξ
)]

− 4
dp
dr
ξ + ω2ρrξ = 0. (∗)

This is an eigenvalue equation for ω2.

Cast the equation into self-adjoint form: d
dr [f(r)dξ

dr ] + g(r)ξ = 0, and show that if
p = 0 at r = R, the eigenfrequency ω satisfies ω2 = K/I, where

K =
∫ R

0

{
γpr4

(
dξ
dr

)2

− r3
d
dr

[(3γ − 4)p]ξ2
}

dr

and

I =
∫ R

0

r4ρξ2 dr.

In view of the symmetry of the integrals, the ratio K/I provides a variational
principle for ω2 amongst bounded twice-differentiable functions ξ. In particular, the lowest
eigenvalue ω2 is a minimum of K/I.

Integrate the second term in the integrand for K by parts, and express ξ in terms
of χ and dξ/dr to show that

K =
1
3

∫ R

0

[
4r2

(
dξ
dr

)2

+ (3γ − 4)χ2

]
pr2 dr.

Deduce that a necessary condition for the star to be dynamically unstable is that
γ < 4

3 somewhere.

It can be shown that the bounded eigenfunctions of equation (*) span the space of
bounded twice-differentiable functions. By considering the value of the functional K(ξ)
when ξ = constant, or otherwise, show that a necessary condition for dynamical stability
is that γ > 4

3 somewhere.
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Comment on the usefulness of these conditions for determining the stability of a
star.

[Bessel’s equation is
d2Jν

dz2
+

1
z

dJν

dz
+ (1− ν2

z2
)Jν = 0.

If |z| is small compared with unity, Jν ' ( 1
2z)

ν ; if |z| is substantially greater than unity,
Jν ' ( 2

πz )
1
2 cos(z − 1

2 (ν + 1
2π)).]
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