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ASTROPHYSICAL DISCS AND MAGNETOHYDRODYNAMICS

Attempt THREE questions.

There are four questions in total.

The questions carry equal weight.

You may not start to read the questions

printed on the subsequent pages until

instructed to do so by the Invigilator.
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1 A gas flows according the equations of compressible, ideal magnetohydrodynamics

∂ρ

∂t
+∇ · (ρu) = 0,

ρ

(
∂u
∂t

+ u · ∇u
)

= −ρ∇Φ −∇p+
1
µ0

(∇×B)×B,

ρT

(
∂s

∂t
+ u · ∇s

)
= 0,

∂B
∂t

= ∇× (u×B),

∇ ·B = 0.

The flow is such that all physical quantities are independent of t and z, when referred to
Cartesian coordinates (x, y, z).

(i) Argue that the velocity and magnetic field are related by

u =
kB
ρ

+ U ez,

where k and U are constant on each magnetic field line.

(ii) Show further that s, and also the quantity

V = uz −
Bz

µ0k
,

are constant on each magnetic field line. Deduce that, unless Bz vanishes identically on
a magnetic field line, the horizontal velocity and the horizontal Alfvén velocity cannot
coincide at any single point of the field line.

(iii) Consider the quantity

Q =
1
2
u2 + Φ + w − UBz

µ0k
,

where w is the specific enthalpy, such that dw = T ds+ ρ−1 dp. Show that Q is constant
on each magnetic field line, and discuss the physical interpretation of this conservation
law.

Paper 65



3

2 (i) Starting from the equation of mass conservation,
∂ρ

∂t
+∇ · (ρu) = 0,

and the equation of motion in the form

ρ

(
∂u
∂t

+ u · ∇u
)

= −ρ∇Φ −∇p+∇ ·T,

derive the diffusion equation
∂Σ
∂t

=
3
r

∂

∂r

[
r1/2 ∂

∂r

(
r1/2ν̄Σ

)]
(∗)

governing the surface density Σ(r, t) of a Keplerian disc. You should state any approxi-
mations or assumptions you require, and explain how the mean kinematic viscosity ν̄(r, t)
is related to the stress tensor T.

[You may assume that the divergence of a vector field A and a symmetric second-rank
tensor field B in cylindrical polar coordinates (r, φ, z) are

∇ ·A =
1
r

∂

∂r
(rAr) +

1
r

∂Aφ

∂φ
+
∂Az

∂z
,

∇ ·B =
[
1
r

∂

∂r
(rBrr) +

1
r

∂Brφ

∂φ
+
∂Brz

∂z
− Bφφ

r

]
er

+
[

1
r2

∂

∂r
(r2Brφ) +

1
r

∂Bφφ

∂φ
+
∂Bφz

∂z

]
eφ

+
[
1
r

∂

∂r
(rBrz) +

1
r

∂Bφz

∂φ
+
∂Bzz

∂z

]
ez.]

(ii) Consider a disc with the viscosity law

ν̄ = Ar2Σ,

where A is a constant. Show that solutions of the form

Σ = σ(t)
{[

R(t)
r

]a

− 1
}
, r ≤ R(t),

exist for only two non-zero values of the parameter a, namely a = 1 and a = 5/4. In each
case, solve for σ(t) and R(t), assuming that R(0) = 0.

(iii) For the solution with a = 1, show that the mean radial velocity in the disc is

ūr = − (R− 5r)
10t

.

Determine the trajectories of fluid elements moving with the mean radial velocity, and
deduce that almost every fluid element is accreted in a finite time. For the solution with
a = 5/4, show that ūr is strictly positive.

(iv) Investigate whether mass and angular momentum are globally conserved in either of
the two solutions. Comment on the likely significance of these special solutions among
solutions of equation (∗) as an initial-value problem with various initial and boundary
conditions.
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3 Let (r, φ, z) be cylindrical polar coordinates, and let Φ(r, z) be an axisymmetric
gravitational potential that is symmetric about the mid-plane z = 0.

(i) Show that the angular velocity Ω(r), epicyclic oscillation frequency κ(r) and vertical
oscillation frequency Ωz(r) associated with circular test-particle orbits in the mid-plane
are given by

Ω2 =
1
r
Φ,r(r, 0),

κ2 = Φ,rr(r, 0) +
3
r
Φ,r(r, 0),

Ω2
z = Φ,zz(r, 0),

where the subscript comma denotes partial differentiation.

(ii) Accretion on to a non-rotating black hole can be modelled using Newtonian dynamics,
by using a gravitational potential that differs from that of a point mass. Consider the
potential

Φ = − GM

(r2 + z2)1/2 − a
, r2 + z2 > a2,

where a represents the radius of the black hole. Find Ω(r), κ(r) and Ωz(r) for this
potential, and deduce that circular test-particle orbits are unstable for a < r < 3a.

(iii) A particle, initially in a circular orbit of radius 3a, is given an infinitesimal inward
radial displacement. Show that it spirals into the black hole, and that its velocity at radius
r, for a < r < 3a, is

v = −
[
GM(3a− r)3

4ar2(r − a)

]1/2

er +
[
27GMa

4r2

]1/2

eφ.

(iv) Consider a steady, thin accretion disc around the black hole. You may assume that
the disc is composed of an ideal gas, is strictly isothermal, and has an effective viscosity
given by the alpha prescription. Show that the fluid velocity field u = v, where v is as
given above, provides a good approximate solution of the equation of motion of the fluid
in the region a < r < 3a, within this Newtonian model. Estimate the order of magnitude
of the fractional error in this approximation, in terms of the characteristic angular semi-
thickness (H/r) of the disc. Argue that the viscous torque at r = 2a, say, is smaller than
that at r = 4a, say, by a factor of order α(H/r)2.
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4 The shearing box is a local model of a differentially rotating disc. The velocity
perturbation v and magnetic field B in an incompressible shearing box of uniform density
ρ, kinematic viscosity ν and magnetic diffusivity η satisfy the same equations as in the
shearing sheet,(

∂

∂t
− 2Ax

∂

∂y

)
v − 2Avx ey + 2Ω ez × v + v · ∇v = −∇ψ +

1
µ0ρ

B · ∇B + ν∇2v,

(
∂

∂t
− 2Ax

∂

∂y

)
B + 2ABx ey + v · ∇B = B · ∇v + η∇2B,

∇ · v = ∇ ·B = 0.

However, unlike the shearing sheet, these equations are solved in a finite box

0 < x < Lx, 0 < y < Ly, 0 < z < Lz.

If f denotes ψ or any component of v or B, the boundary conditions are

f(Lx, y, z, t) = f(0, y′, z, t),
f(x, Ly, z, t) = f(x, 0, z, t), (∗∗)
f(x, y, Lz, t) = f(x, y, 0, t),

where
y′ = (y + 2ALxt) mod Ly.

(i) Explain briefly how the quantities Ω, A and ψ in the shearing sheet relate to the
physical quantities in a differentially rotating disc.

(ii) Let angle brackets denote an average over the volume of the box, i.e.

〈f〉(t) =
1

LxLyLz

∫ Lz

0

∫ Ly

0

∫ Lx

0

f(x, y, z, t) dxdy dz.

If Q(x, y, z, t) denotes any quantity satisfying the boundary conditions (∗∗), show that〈∂Q
∂x

〉
=

〈∂Q
∂y

〉
=

〈
x
∂Q

∂y

〉
=

〈∂Q
∂z

〉
= 0.

(iii) Derive the volume-averaged equations

d〈v〉
dt

− 2A〈vx〉 ey + 2Ω ez × 〈v〉 = 0,

d〈B〉
dt

+ 2A〈Bx〉 ey = 0.

Deduce that the box as a whole can undergo epicyclic oscillations. Explain why it is
impossible for an accretion flow to develop in the shearing box.
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(iv) Derive the energy-like equation

d
dt

〈1
2
v2 +

B2

2µ0ρ

〉
= 2A

〈
vxvy −

BxBy

µ0ρ

〉
− ν

〈
|∇ × v|2

〉
− η

µ0ρ

〈
|∇ ×B|2

〉
.

Let L = max(Lx, Ly, Lz), and define the magnetic Reynolds number

Rm =
L2|A|
η

.

Show that, if ν = η and 〈v〉 = 〈B〉 = 0, turbulence cannot be sustained in the box if
Rm < 4π2.
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