MATHEMATICAL TRIPOS Part III

Tuesday 12 June 2007 9.00 to 12.00

PAPER 89

ARITHMETIC GEOMETRY

Attempt **FOUR** questions. There are **FIVE** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. **1** Let X be a scheme. What does it mean to say that X is *integral*? Show that Spec R is integral if and only if R is an integral domain.

Let X be a scheme whose connected components are open. Show if $e \in \Gamma(X, \mathcal{O}_X)$ is an idempotent (i.e. $e^2 = e$) then V((1 - e)) is an open and closed subset of X. Deduce that there is a bijection between the set of connected components of X, and the set of idempotents in $\Gamma(X, \mathcal{O}_X)$ which are indecomposable (i.e. cannot be written as the sum of two non-zero idempotents).

2 Let X be a scheme of characteristic p > 0. Define the Frobenius morphism $F_X: X \to X$. Show that F_X is an isomorphism if and only if all the local rings $\mathcal{O}_{X,x}$ are perfect.

Let $f: X \to Y$ be a finite surjective morphism of normal schemes of characteristic p. Identify the function field k(Y) with a subfield of k(X) via f^* . Show that

(i) if $k(X)^p \subset k(Y)$ then there is a unique morphism $g: Y \to X$ with $F_X = g \circ f$;

(ii) if $k(X)^p \supset k(Y)$ then there is a unique morphism $h: X \to Y$ such that $f = h \circ F_X$.

3 What does it mean to say that a morphism of schemes is *flat*? Show that an open immersion is always flat, and that a closed immersion between connected schemes is flat if and only if it is an isomorphism.

Let $f: X \to Y$ be a finite and flat morphism of irreducible schemes. For a point $y \in Y$ let $X_y = X \times_Y \operatorname{Spec} k(y)$ denote the fibre of f above y. Show that the function $y \mapsto \dim_{k(y)} \Gamma(X_y, \mathcal{O}_{X_y})$ is constant.

Hence show that if C is a curve (integral scheme of dimension one) over a field and $\pi: C' \to C$ is its normalisation, then π is flat if and only if C' = C.

4 Let R be a discrete valuation ring with uniformiser π and field of fractions F. Let X be the closed subscheme of $\mathbb{P}^3_R = \operatorname{Proj} R[x_0, x_1, x_2, x_3]$ defined by the ideal

$$(x_1^2 - \pi^2 x_0 x_2, x_1 x_3 - \pi x_2^2, x_1 x_2 - \pi x_0 x_3, x_0 x_3^2 - x_2^3)$$

(i) Show that there is an isomorphism $\mathbb{P}_F^1 \simeq X \otimes_R F$ given by $(y_0, y_1) \mapsto (y_0^3, \pi y_0^2 y_1, y_0 y_1^2, y_1^3)$.

(ii) Show that the open subscheme $\{x_3 \neq 0\} \subset X$ is isomorphic to \mathbb{A}^1_R . Show also that if $U \subset X$ is the open subscheme $\{x_0 \neq 0\}$ then $U = \operatorname{Spec} B$ is affine and B is a torsion-free *R*-module. Deduce that X is proper and flat over $\operatorname{Spec} R$.

(iii) Let $s \in \operatorname{Spec} R$ be the closed point. Show that the base change map $\Gamma(X, \mathcal{O}_X) \to \Gamma(X_s, \mathcal{O}_{X_s})$ is not an isomorphism.

5 Let \mathcal{F} be a quasi-coherent sheaf on a separated scheme X. Define the *Čech* cohomology groups $H^p(X, \mathcal{F})$ of \mathcal{F} on X. Explain why, for any exact sequence $0 \to \mathcal{F}' \to \mathcal{F} \to \mathcal{F}'' \to 0$, there is a long exact sequence of cohomology

$$H^p(X, \mathcal{F}') \to H^p(X, \mathcal{F}) \to H^p(X, \mathcal{F}'') \to H^{p+1}(X, \mathcal{F}') \to \dots$$

Let k be a field and X the complement of the origin in \mathbb{A}^2_k . Show that $H^1(X, \mathcal{O}_X)$ is infinite-dimensional.

END OF PAPER