

MATHEMATICAL TRIPOS Part III

Thursday 29 May 2008 9.00 to 12.00

PAPER 75

APPROXIMATION THEORY

Attempt no more than **FOUR** questions. There are **SIX** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS Cover sheet

Cover sneet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. 2

1 a) For a set $\Phi = (u_0, \ldots, u_n)$ of real continuous functions on [a, b], define when it is a Chebyshev system, and prove that Φ is a Chebyshev system if and only if for any distinct points $(x_i)_0^n$ from [a, b] the determinant

$$D(x_0, x_1, \dots, x_n) := \begin{vmatrix} u_0(x_0) & \cdots & u_n(x_0) \\ \cdots & \cdots & \cdots \\ u_0(x_n) & \cdots & u_n(x_n) \end{vmatrix}$$

does not vanish.

b) Prove that, for any distinct λ_i , the set $\Phi = (e^{\lambda_i x})_{i=0}^n$ is a Chebyshev system on any [a, b].

c) Prove that, on the circle (i.e. on the period $\mathbb{T} = [-\pi, \pi)$), there is no Chebyshev system of *even* dimension.

2 State the Korovkin theorem on approximation of functions $f \in C[0, 1]$ by positive linear operators.

For $k \geq 3$, let $S_k(\Delta_n)$ be a sequence of spline spaces of degree k-1 on the interval [0,1] with the knot-sequences

$$\Delta_n = \{ t_1^{(n)} = \dots = t_k^{(n)} = 0 < t_{k+1}^{(n)} \le \dots \le t_n^{(n)} < t_{n+1}^{(n)} = \dots = t_{n+k}^{(n)} = 1 \}$$

such that $|\Delta_n| := \max_i |t_{i+1}^{(n)} - t_i^{(n)}| \to 0 \quad (n \to \infty)$. Consider the Schoenberg-type operator

$$V_n: C[0,1] \to \mathcal{S}_k(\Delta_n), \qquad V_n(f,t) = \sum_{i=1}^n f(\tau_i^{(n)}) N_{i,n}(t),$$

where $(N_{i,n})$ is the B-spline basis for $\mathcal{S}_k(\Delta_n)$ and $\tau_i^{(n)}$ are any points satisfying

$$t_i^{(n)} < \tau_i^{(n)} < t_{i+k}^{(n)}$$

Using the Korovkin theorem prove that, for any $f \in C[0, 1]$, we have

$$||V_n(f) - f||_{C[0,1]} \to 0 \quad (n \to \infty).$$

Hint. You may use the B-spline expansion of the monomials $t^m = \sum_{i=1}^n a_{m,i} N_i(t)$, $0 \le t \le 1$, where (suppressing the index n) the coefficients $a_{m,i}$ can be determined from the Marsden identity

$$(x-t)^{k-1} = \sum_{i=1}^{n} \omega_i(x) N_i(t), \qquad t_k \le t \le t_{n+1}, \qquad \forall x \in \mathbb{R}.$$

Paper 75

3

3 State the Chebyshev alternation theorem on the element of best approximation to a function $f \in C[-1, 1]$ from \mathcal{P}_n , the space of all algebraic polynomials of degree n.

Let

$$E_n(f) := \inf_{p_n \in \mathcal{P}_n} \|f - p_n\|_{C[-1,1]}$$

It is clear that, for any $f \in C[-1, 1]$, we have the inequality

$$E_{n-1}(f) \ge E_n(f).$$

- a) For every n, give an example of the function $f = f_n$ such that $E_{n-1}(f) = E_n(f)$.
- b) Prove that, for $f(x) = e^x$, and for any n, we have

$$E_{n-1}(f) > E_n(f),$$

i.e., for such f the inequality is strict.

c) Show that, to each $f \in C[-1, 1]$, there exists a system of points $(x_{n,k})$ such that if $\ell_n(f)$ is the interpolating polynomial to f at the nodes $x_{n,0}, x_{n,1}, \ldots, x_{n,n}$, then

$$\|\ell_n(f) - f\|_{\infty} \to 0.$$

4 On C(I), the space of continuous functions on I = [-1, 1], the "tilde" operator is given by the rule $\tilde{f}(\theta) := f(\cos \theta)$.

a) Prove that

$$\omega(\widetilde{f},t) \le \omega(f,t) \,,$$

where $\omega(f, t)$ is the first modulus of continuity.

b) State the first Jackson theorem for periodic functions and deduce (justifying each step) its analogue for approximation by algebraic polynomials of degree $\leq n$ on [-1, 1]:

$$E_n(f) \leq c \,\omega\left(f, \frac{1}{n}\right).$$

Paper~75

[TURN OVER

UNIVERSITY OF

4

5 Given $\Delta = (t_i)_{i=1}^{n+k}$, let ω_i and ψ_i be polynomials in \mathcal{P}_{k-1} defined as

$$\omega_i(x) := (x - t_{i+1}) \cdots (x - t_{i+k-1}), \qquad \psi_i(x) := \frac{1}{(k-1)!} \,\omega_i(x) \,$$

and let $(N_i)_{i=1}^n$ be the corresponding B-spline sequence. From the Marsden identity:

$$(x-t)^{k-1} = \sum_{i=1}^{n} \omega_i(x) N_i(t), \qquad t_k \le t \le t_{n+1}, \qquad \forall x \in \mathbb{R}$$

derive that any algebraic polynomial $p \in \mathcal{P}_{k-1}$ has the B-spline expansion

$$p(t) = \sum_{i=1}^{n} \lambda_i(p) N_i(t), \qquad t \in [t_k, t_{n+1}],$$

and express the functional $\lambda_i(p)$ in terms of p, ψ_i and $x \in \mathbb{R}$. Explain briefly why $\lambda_i(p)$ are independent of x.

Use the latter expansion to prove that, with $t_i^* = \frac{1}{k-1}(t_{i+1} + \cdots + t_{i+k-1})$, we have

$$p(t) = \sum_{i=1}^{n} p(t_i^*) N_i(t), \qquad \forall p \in \mathcal{P}_1.$$

6 1) Let X be an inner product space with the scalar product (\cdot, \cdot) and the norm $||x|| := (x, x)^{1/2}$, and let \mathcal{U}_n be an *n*-dimensional subspace.

a) Prove that $u^* \in \mathcal{U}_n$ is the best approximation to $x \in \mathbb{X}$ from \mathcal{U}_n if and only if

$$(x - u^*, v) = 0 \qquad \forall v \in \mathcal{U}_n.$$

b) Let $(u_j)_{j=1}^n$ be a basis for \mathcal{U}_n and let $G = ((u_i, u_j))_{i,j=1}^n$ be the corresponding Gram matrix. Prove that the elements of the Gramian inverse $G^{-1} = (b_{jk})$ are

$$b_{jk} = (\widehat{u}_j, \widehat{u}_k)$$

where (\hat{u}_k) is the dual basis, i.e., $(u_i, \hat{u}_k) = \delta_{ik}$.

(*Hint.* Use the equality $\delta_{ik} = (G \cdot G^{-1})_{ik}$.)

2) Given $f \in C[0,1]$ and a basis (N_j) of the L_{∞} -normalized B-splines, let

$$P_{\mathcal{S}}(f) := s^* = \sum_{j=1}^n a_j N_j$$

be the best spline approximation to f from $S := \text{span}(N_j)$ with respect to the L_2 -norm; then P_S is also well defined as an operator from C[0, 1] onto C[0, 1].

Show that the max-norm of $P_{\mathcal{S}}$ satisfies the inequality

$$\|P_{\mathcal{S}}\|_{\infty} \le \|G^{-1}\|_{\ell_{\infty}}$$

where $G = (M_i, N_j)$ is the Gram matrix.

END OF PAPER

Paper 75