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1 For f ∈ C[0, 1], write down the definition of the Bernstein polynomial Bn(f) and
prove that, for any polynomial p of degree m < n, the Bernstein polynomial Bn(p) is also
of degree m.

Hence, or otherwise, show that, uniformly in [0, 1],

Bn(p) → p (n →∞), for p(x) = 1, x, or x2.

2 For a 2π-periodic function f ∈ C(T), write down the definitions of the Fourier sum
sn(f) and of the Fejer sum σn(f) of degree n and n− 1, respectively.

Consider the so-called de la Vallee Poussin sum

vn,m(f) := 1
m

(
sn(f) + sn+1(f) + · · ·+ sn+m−1(f)

)
.

(a) Show that, for any trigonometric polynomial tn of degree n, we have

vn,m(tn) = tn

for any m.

(b) Find an expression for vn,m in terms of two Fejer sums σk and σ` and use it to
derive the bound

‖vn,m(f)‖∞ ≤
(

2n
m + 1

)
‖f‖∞ ∀ f ∈ C(T) .

(c) Let n
m ≤ M . Combine (a) and (b) to establish the inequality

‖f − vn,m(f)‖∞ ≤ 2(M + 1) En(f) ∀ f ∈ C(T) ,

where En(f) is the best uniform approximation of f from Tn, the space of all trigonometric
polynomials of degree n.

3 Let σn be the Fejer operator, i.e., for a 2π-periodic function f ∈ C(T),

σn(f, x) = 1
π

∫ π

−π

f(x− t)Fn(t) dt, Fn(t) := 1
2n

sin2 nt
2

sin2 t
2

, 1
π

∫ π

−π

Fn(t)dt = 1.

Prove that, for any α ∈ (0, 1), the following estimate is valid:

‖σn(f)− f‖∞ ≤ cα ω
(
f, 1

nα

)
,

where ω(f, δ) is the (first) modulus of continuity of f , and cα is a constant that depends
only on α.
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4 (a) State the Chebyshev alternation theorem for the element of best uniform
approximation to a function f ∈ C[−1, 1] from Pn, the space of all algebraic polynomials
of degree n.

(b) Let Tn(x) = cos n arccos x be the Chebyshev polynomial of degree n, and let

f(x) =
∞∑

k=0

akT3k(x), where ak > 0,

∞∑
k=0

ak < ∞, x ∈ [−1, 1].

For every n, find pn, the polynomial of best approximation to f in C[−1, 1], and compute
the value of En(f).

5 (I) Let Sk(∆) be the space of splines of degree k−1 spanned by the L∞-normalized
B-splines (Nj)n

j=1, on a knot sequence ∆ = (tj)n+k
j=1 , where tj < tj+k. Let x = (xi)n

i=1 be
interpolation points obeying the conditions

Ni(xi) > 0 ,

and let Px : C[a, b] → Sk(∆) be the map which, given any f ∈ C[a, b], provides the spline
Px(f) from Sk which interpolates f at (xi). Prove that

‖Px‖L∞ ≤ ‖A−1
x ‖`∞

where Ax is the matrix (Nj(xi))n
i,j=1.

(II) Consider the case of cubic interpolating splines on the uniform knot-sequence
(t1, t2, . . . , tn+4) = (1, 2, . . . , n + 4) with the interpolating points

xi = 1
2 (ti + ti+4) = i + 2, i = 1, . . . , n .

(a) Using the recurrence relation between B-splines, or otherwise, determine the
values of Nj at the points (xi).

(b) Write down the matrix Ax = (Nj(xi)), and evaluate the norm ‖A−1‖`∞ . [You
may use any appropriate theorem on the inverse of certain matrices if correctly stated ].

(c) Hence show that ‖Px‖L∞ ≤ 3.

6 For a knot sequence ∆ = (ti)n+k
i=1 ⊂ [a, b] with distinct knots, let

Mi(t) := k [ti, ..., ti+k](· − t)k−1
+ , Ni(t) := (ti+k − ti) [ti, ..., ti+k](· − t)k−1

+

be the sequences of L1- and L∞-normalized B-splines, respectively. Prove that

(a) M0(t) = k

k∑
i=0

(ti−t)k−1
+

ω′(ti)
, where ω(x) =

k∏
i=0

(x− ti) .

Prove also that

(b)
∫ b

a

Mi(t)dt = 1, (c)
n∑

i=1

Ni(t) = 1, tk ≤ t ≤ tn+1.
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