

MATHEMATICAL TRIPOS Part III

Thursday 1 June, 2006 1.30 to 4.30

PAPER 67

APPROXIMATION THEORY

Attempt **FOUR** questions. There are **SIX** question in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. 2

1 For $f \in C[0, 1]$, write down the definition of the Bernstein polynomial $B_n(f)$ and prove that, for any polynomial p of degree m < n, the Bernstein polynomial $B_n(p)$ is also of degree m.

Hence, or otherwise, show that, uniformly in [0, 1],

$$B_n(p) \to p \quad (n \to \infty), \quad \text{for} \quad p(x) = 1, x, \text{ or } x^2$$

2 For a 2π -periodic function $f \in C(\mathbb{T})$, write down the definitions of the Fourier sum $s_n(f)$ and of the Fejer sum $\sigma_n(f)$ of degree n and n-1, respectively.

Consider the so-called de la Vallee Poussin sum

$$v_{n,m}(f) := \frac{1}{m} \left(s_n(f) + s_{n+1}(f) + \dots + s_{n+m-1}(f) \right).$$

(a) Show that, for any trigonometric polynomial t_n of degree n, we have

$$v_{n,m}(t_n) = t_n$$

for any m.

(b) Find an expression for $v_{n,m}$ in terms of two Fejer sums σ_k and σ_ℓ and use it to derive the bound

$$\|v_{n,m}(f)\|_{\infty} \leq \left(\frac{2n}{m}+1\right) \|f\|_{\infty} \quad \forall f \in C(\mathbb{T}).$$

(c) Let $\frac{n}{m} \leq M$. Combine (a) and (b) to establish the inequality

$$\|f - v_{n,m}(f)\|_{\infty} \le 2(M+1) E_n(f) \quad \forall f \in C(\mathbb{T}),$$

where $E_n(f)$ is the best uniform approximation of f from \mathcal{T}_n , the space of all trigonometric polynomials of degree n.

3 Let σ_n be the Fejer operator, i.e., for a 2π -periodic function $f \in C(\mathbb{T})$,

$$\sigma_n(f,x) = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x-t) F_n(t) dt, \qquad F_n(t) := \frac{1}{2n} \frac{\sin^2 \frac{nt}{2}}{\sin^2 \frac{t}{2}}, \qquad \frac{1}{\pi} \int_{-\pi}^{\pi} F_n(t) dt = 1.$$

Prove that, for any $\alpha \in (0, 1)$, the following estimate is valid:

$$\|\sigma_n(f) - f\|_{\infty} \le c_{\alpha} \,\omega\left(f, \frac{1}{n^{\alpha}}\right),$$

where $\omega(f, \delta)$ is the (first) modulus of continuity of f, and c_{α} is a constant that depends only on α .

Paper 67

4 (a) State the Chebyshev alternation theorem for the element of best uniform approximation to a function $f \in C[-1, 1]$ from \mathcal{P}_n , the space of all algebraic polynomials of degree n.

(b) Let $T_n(x) = \cos n \arccos x$ be the Chebyshev polynomial of degree n, and let

$$f(x) = \sum_{k=0}^{\infty} a_k T_{3^k}(x), \text{ where } a_k > 0, \sum_{k=0}^{\infty} a_k < \infty, x \in [-1, 1].$$

For every n, find p_n , the polynomial of best approximation to f in C[-1, 1], and compute the value of $E_n(f)$.

5 (I) Let $S_k(\Delta)$ be the space of splines of degree k-1 spanned by the L_{∞} -normalized B-splines $(N_j)_{j=1}^n$, on a knot sequence $\Delta = (t_j)_{j=1}^{n+k}$, where $t_j < t_{j+k}$. Let $x = (x_i)_{i=1}^n$ be interpolation points obeying the conditions

$$N_i(x_i) > 0 \,,$$

and let $P_x : C[a, b] \to \mathcal{S}_k(\Delta)$ be the map which, given any $f \in C[a, b]$, provides the spline $P_x(f)$ from \mathcal{S}_k which interpolates f at (x_i) . Prove that

$$||P_x||_{L_{\infty}} \le ||A_x^{-1}||_{\ell_{\infty}}$$

where A_x is the matrix $(N_j(x_i))_{i,j=1}^n$.

(II) Consider the case of cubic interpolating splines on the uniform knot-sequence $(t_1, t_2, \ldots, t_{n+4}) = (1, 2, \ldots, n+4)$ with the interpolating points

$$x_i = \frac{1}{2}(t_i + t_{i+4}) = i+2, \quad i = 1, \dots, n.$$

(a) Using the recurrence relation between B-splines, or otherwise, determine the values of N_i at the points (x_i) .

(b) Write down the matrix $A_x = (N_j(x_i))$, and evaluate the norm $||A^{-1}||_{\ell_{\infty}}$. [You may use any appropriate theorem on the inverse of certain matrices if correctly stated].

(c) Hence show that $||P_x||_{L_{\infty}} \leq 3$.

6 For a knot sequence $\Delta = (t_i)_{i=1}^{n+k} \subset [a, b]$ with distinct knots, let $M_i(t) := k [t_i, ..., t_{i+k}] (\cdot - t)_+^{k-1}, \quad N_i(t) := (t_{i+k} - t_i) [t_i, ..., t_{i+k}] (\cdot - t)_+^{k-1}$

be the sequences of L_1 - and L_∞ -normalized B-splines, respectively. Prove that

(a)
$$M_0(t) = k \sum_{i=0}^k \frac{(t_i - t)_+^{k-1}}{\omega'(t_i)}$$
, where $\omega(x) = \prod_{i=0}^k (x - t_i)$.

Prove also that

(b)
$$\int_{a}^{b} M_{i}(t)dt = 1$$
, (c) $\sum_{i=1}^{n} N_{i}(t) = 1$, $t_{k} \le t \le t_{n+1}$.

END OF PAPER

Paper 67