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1 Korovkin’s theorem states:

If (Un) is a sequence of positive linear operators on C[0, 1] such that

Un(pk) → pk on pk(x) = xk, k = 0, 1, 2,

then
Un(f) → f ∀ f ∈ C[0, 1].

The main stage of its proof is the following statement:

For any f ∈ C[0, 1] and for any ε > 0 there exists a constant γ = γ(f, ε) such that,
with

q±t (x) := f(t)± [ε + γ(x− t)2],

we have the inequalities

q−t (x) < f(x) < q+
t (x), ∀x, t ∈ [0, 1].

a) Starting from this stage complete the proof of Korovkin theorem.

b) Prove that the only positive linear operator U on C[0, 1] such that

U(p) = p for all quadratic functions p(x) = ax2 + bx + c,

is the identity operator I such that I(f) = f for all f ∈ C[0, 1].

2 Let Tn be the Chebyshev polynomial of degree n, let ∆∗ := (t∗i ) := (cos πi
n )n

i=0 be
the sequence of its equioscillation points, and let ‖ · ‖ := ‖ · ‖C[−1,1].

According to the Markov-Duffin-Schaeffer theorem, if pn is a polynomial of degree
n which satisfies

|pn(t∗i )| ≤ 1, t∗i ∈ ∆∗,

then
‖p(k)

n ‖ ≤ |T (k)
n (1)| , k = 1, . . . , n .

Prove that ∆∗ is the only sequence with this property, i.e., for any other sequence
∆ = (ti)n

i=0 ⊂ [−1, 1] with distinct ti which differs from ∆∗ at least in one point, there
exists a polynomial qn of degree n such that

|qn(ti)| ≤ 1, ti ∈ ∆ ,

and
‖q(k)

n ‖ > |T (k)
n (1)|, k = 1, . . . , n .

[Hint: Use the Lagrange interpolation formula, certain sign patterns for qn(ti), and the
inequality ‖q(k)

n ‖ ≥ |q(k)
n (1)|.]
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3 Let En(f) be the value of the best approximation of a 2π-periodic f by trigono-
metric polynomials of degree n, and let ω(f, δ) be the modulus of continuity of f .

Formulate the inverse theorem for trigonometric approximation and show that

En(f) = O(nα) implies ω(f, δ) = O(δα), 0 < α < 1.

You should pay attention to the values δ > 1 and 1
n+1 < δ < 1

n .

Find the order of ω(g, δ) for the Weierstrass function

g(x) :=
∑∞

k=0
1
2k cos 3kx

using the fact that, for 3m ≤ n < 3m+1, the polynomial of best approximation of degree
n to g is the partial sum tn(x) =

∑m
k=0

1
2k cos 3kx.

4 Let (Ni,k)n
i=0 be the sequence of B-splines of order k on the uniform knot sequence

∆ = (ti)n+k
i=0 = (0, 1, . . . , n + k).

(a) Write down the recurrence relation between Ni,k and Nj,k−1.

(b) Use it to determine the values of N0,k(x) at its knots for k = 3, 4, 5, 6. Arrange
results in the triangular array

k = 2 0 1 0
k = 3 0 ∗ ∗ 0

...
...

k = 6 0 ∗ ∗ ∗ ∗ ∗ 0

(c) Consider the interpolation problem of finding s =
∑n

i=0 aiNi,k such that

s(xi) = f(xi), xi =
ti + ti+k

2
, i = 0, . . . , n,

Let Axa = f
∣∣
x

be the linear system for determining (ai). For k = 6 write down the matrix
Ax and prove that the `∞-norm of its inverse satisfies

‖A−1
x ‖∞ ≤ 10.

[You may use any appropriate theorems on the inverse of certain matrices if correctly
stated.]
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5 State the Chebyshev alternation theorem on the element of best approximation to
a function f ∈ C[0, 1] from Pn, the space of all algebraic polynomials of degree n.

Let
En(f) := inf

pn∈Pn

‖f − pn‖C[0,1].

It is clear that, for any f ∈ C[0, 1], we have the inequality

En(f) ≥ En+1(f).

Prove that, if f ∈ Cn+1[0, 1] and f (n+1) > 0 on [0, 1], then

En(f) > En+1(f),

i.e., for such f the equality sign is excluded.

6 Given a knot sequence ∆ = (ti)n+k
i=1 , let ωi and `i(·, t) be polynomials in Pk−1

defined by
1) ωi(x) := (x−ti+1) · · · (x−ti+k−1),

2) `i(·, t) interpolates (· − t)k−1
+ on x = ti, ..., ti+k−1,

and let
Ni := (ti+k − ti)[ti, . . . , ti+k](· − t)k−1

+

be the B-spline of order k with the knots ti, . . . , ti+k.

Prove Lee’s formula

ωi(x)Ni(t) = `i+1(x, t)− `i(x, t), ∀x, t ∈ R

and derive from it the Marsden identity:

(x− t)k−1 =
n∑

i=1

ωi(x)Ni(t), tk < t < tn+1, ∀x ∈ R.
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7 (1) Let X be an innner product space with the scalar product (·, ·) and the norm
‖x‖ := (x, x)1/2, and let Un be an n-dimensional subspace.

(a) Prove that u∗ ∈ Un is the best approximation to x ∈ X from Un if and only if

(x− u∗, v) = 0 ∀v ∈ Un.

(b) Let (uj)n
j=1 be a basis for Un. Derive the normal equations for determining the

coefficients of expansion u∗ =
∑

j ajuj .

(2) Given f ∈ C[0, 1] and a basis (Nj) of the L∞-normalized B-splines, let

PS(f) := s∗ =
n∑

j=1

ajNj

be the best spline approximation to f from S := span (Nj) with respect to the L2-norm,
and PS is also well defined as an operator from C[0, 1] onto C[0, 1].

Show that the max-norm of PS satisfies the inequality

‖PS‖∞ ≤ ‖G−1‖`∞

where G is an appropriate Gram matrix.
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