PAPER 61

APPROXIMATION THEORY

Attempt FIVE questions
There are seven questions in total
The questions carry equal weight

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1 Korovkin's theorem states:
If $\left(U_{n}\right)$ is a sequence of positive linear operators on $C[0,1]$ such that

$$
U_{n}\left(p_{k}\right) \rightarrow p_{k} \quad \text { on } \quad p_{k}(x)=x^{k}, \quad k=0,1,2
$$

then

$$
U_{n}(f) \rightarrow f \quad \forall f \in C[0,1] .
$$

The main stage of its proof is the following statement:
For any $f \in C[0,1]$ and for any $\epsilon>0$ there exists a constant $\gamma=\gamma(f, \epsilon)$ such that, with

$$
q_{t}^{ \pm}(x):=f(t) \pm\left[\epsilon+\gamma(x-t)^{2}\right]
$$

we have the inequalities

$$
q_{t}^{-}(x)<f(x)<q_{t}^{+}(x), \quad \forall x, t \in[0,1] .
$$

a) Starting from this stage complete the proof of Korovkin theorem.
b) Prove that the only positive linear operator U on $C[0,1]$ such that

$$
U(p)=p \quad \text { for all quadratic functions } \quad p(x)=a x^{2}+b x+c
$$

is the identity operator I such that $I(f)=f$ for all $f \in C[0,1]$.

2 Let T_{n} be the Chebyshev polynomial of degree n, let $\Delta^{*}:=\left(t_{i}^{*}\right):=\left(\cos \frac{\pi i}{n}\right)_{i=0}^{n}$ be the sequence of its equioscillation points, and let $\|\cdot\|:=\|\cdot\|_{C[-1,1]}$.

According to the Markov-Duffin-Schaeffer theorem, if p_{n} is a polynomial of degree n which satisfies

$$
\left|p_{n}\left(t_{i}^{*}\right)\right| \leq 1, \quad t_{i}^{*} \in \Delta^{*},
$$

then

$$
\left\|p_{n}^{(k)}\right\| \leq\left|T_{n}^{(k)}(1)\right|, \quad k=1, \ldots, n
$$

Prove that Δ^{*} is the only sequence with this property, i.e., for any other sequence $\Delta=\left(t_{i}\right)_{i=0}^{n} \subset[-1,1]$ with distinct t_{i} which differs from Δ^{*} at least in one point, there exists a polynomial q_{n} of degree n such that

$$
\left|q_{n}\left(t_{i}\right)\right| \leq 1, \quad t_{i} \in \Delta
$$

and

$$
\left\|q_{n}^{(k)}\right\|>\left|T_{n}^{(k)}(1)\right|, \quad k=1, \ldots, n
$$

[Hint: Use the Lagrange interpolation formula, certain sign patterns for $q_{n}\left(t_{i}\right)$, and the inequality $\left\|q_{n}^{(k)}\right\| \geq\left|q_{n}^{(k)}(1)\right|$.]

3 Let $E_{n}(f)$ be the value of the best approximation of a 2π-periodic f by trigonometric polynomials of degree n, and let $\omega(f, \delta)$ be the modulus of continuity of f.

Formulate the inverse theorem for trigonometric approximation and show that

$$
E_{n}(f)=\mathcal{O}\left(n^{\alpha}\right) \quad \text { implies } \quad \omega(f, \delta)=\mathcal{O}\left(\delta^{\alpha}\right), \quad 0<\alpha<1
$$

You should pay attention to the values $\delta>1$ and $\frac{1}{n+1}<\delta<\frac{1}{n}$.
Find the order of $\omega(g, \delta)$ for the Weierstrass function

$$
g(x):=\sum_{k=0}^{\infty} \frac{1}{2^{k}} \cos 3^{k} x
$$

using the fact that, for $3^{m} \leq n<3^{m+1}$, the polynomial of best approximation of degree n to g is the partial sum $t_{n}(x)=\sum_{k=0}^{m} \frac{1}{2^{k}} \cos 3^{k} x$.

4 Let $\left(N_{i, k}\right)_{i=0}^{n}$ be the sequence of B-splines of order k on the uniform knot sequence $\Delta=\left(t_{i}\right)_{i=0}^{n+k}=(0,1, \ldots, n+k)$.
(a) Write down the recurrence relation between $N_{i, k}$ and $N_{j, k-1}$.
(b) Use it to determine the values of $N_{0, k}(x)$ at its knots for $k=3,4,5,6$. Arrange results in the triangular array

| $k=2$ | | | | 0 | 1 | 0 | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $k=3$ | | | 0 | $*$ | $*$ | 0 | | |
| \vdots | | | | | \vdots | | | |
| $k=6$ | | 0 | $*$ | $*$ | $*$ | $*$ | $*$ | 0 |

(c) Consider the interpolation problem of finding $s=\sum_{i=0}^{n} a_{i} N_{i, k}$ such that

$$
s\left(x_{i}\right)=f\left(x_{i}\right), \quad x_{i}=\frac{t_{i}+t_{i+k}}{2}, \quad i=0, \ldots, n
$$

Let $A_{x} a=\left.f\right|_{x}$ be the linear system for determining $\left(a_{i}\right)$. For $k=6$ write down the matrix A_{x} and prove that the ℓ_{∞}-norm of its inverse satisfies

$$
\left\|A_{x}^{-1}\right\|_{\infty} \leq 10
$$

[You may use any appropriate theorems on the inverse of certain matrices if correctly stated.]

5 State the Chebyshev alternation theorem on the element of best approximation to a function $f \in C[0,1]$ from \mathcal{P}_{n}, the space of all algebraic polynomials of degree n.

Let

$$
E_{n}(f):=\inf _{p_{n} \in \mathcal{P}_{n}}\left\|f-p_{n}\right\|_{C[0,1]} .
$$

It is clear that, for any $f \in C[0,1]$, we have the inequality

$$
E_{n}(f) \geq E_{n+1}(f)
$$

Prove that, if $f \in C^{n+1}[0,1]$ and $f^{(n+1)}>0$ on $[0,1]$, then

$$
E_{n}(f)>E_{n+1}(f)
$$

i.e., for such f the equality sign is excluded.

6 Given a knot sequence $\Delta=\left(t_{i}\right)_{i=1}^{n+k}$, let ω_{i} and $\ell_{i}(\cdot, t)$ be polynomials in \mathcal{P}_{k-1} defined by

1) $\omega_{i}(x):=\left(x-t_{i+1}\right) \cdots\left(x-t_{i+k-1}\right)$,
2) $\ell_{i}(\cdot, t)$ interpolates $(\cdot-t)_{+}^{k-1}$ on $x=t_{i}, \ldots, t_{i+k-1}$,
and let

$$
N_{i}:=\left(t_{i+k}-t_{i}\right)\left[t_{i}, \ldots, t_{i+k}\right](\cdot-t)_{+}^{k-1}
$$

be the B-spline of order k with the knots t_{i}, \ldots, t_{i+k}.
Prove Lee's formula

$$
\omega_{i}(x) N_{i}(t)=\ell_{i+1}(x, t)-\ell_{i}(x, t), \quad \forall x, t \in \mathbb{R}
$$

and derive from it the Marsden identity:

$$
(x-t)^{k-1}=\sum_{i=1}^{n} \omega_{i}(x) N_{i}(t), \quad t_{k}<t<t_{n+1}, \quad \forall x \in \mathbb{R}
$$

7 (1) Let \mathbb{X} be an innner product space with the scalar product (\cdot, \cdot) and the norm $\|x\|:=(x, x)^{1 / 2}$, and let \mathcal{U}_{n} be an n-dimensional subspace.
(a) Prove that $u^{*} \in \mathcal{U}_{n}$ is the best approximation to $x \in \mathbb{X}$ from \mathcal{U}_{n} if and only if

$$
\left(x-u^{*}, v\right)=0 \quad \forall v \in \mathcal{U}_{n} .
$$

(b) Let $\left(u_{j}\right)_{j=1}^{n}$ be a basis for \mathcal{U}_{n}. Derive the normal equations for determining the coefficients of expansion $u^{*}=\sum_{j} a_{j} u_{j}$.
(2) Given $f \in C[0,1]$ and a basis $\left(N_{j}\right)$ of the L_{∞}-normalized B-splines, let

$$
P_{\mathcal{S}}(f):=s^{*}=\sum_{j=1}^{n} a_{j} N_{j}
$$

be the best spline approximation to f from $\mathcal{S}:=\operatorname{span}\left(N_{j}\right)$ with respect to the L_{2}-norm, and $P_{\mathcal{S}}$ is also well defined as an operator from $C[0,1]$ onto $C[0,1]$.

Show that the max-norm of $P_{\mathcal{S}}$ satisfies the inequality

$$
\left\|P_{\mathcal{S}}\right\|_{\infty} \leq\left\|G^{-1}\right\|_{\ell_{\infty}}
$$

where G is an appropriate Gram matrix.

