PAPER 41

APPLIED STATISTICS

Attempt no more than FOUR questions.
There are FIVE questions in total.
The questions carry equal weight.

STATIONERY REQUIREMENTS	SPECIAL REQUIREMENTS
Cover sheet	None
Treasury tag	
Script paper	

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1 Let $Y=X \beta+\epsilon$ where $Y^{T}=\left(Y_{1}, \ldots, Y_{n}\right), \beta^{T}=\left(\beta_{1}, \ldots, \beta_{p}\right), X$ is a known $n \times p$ matrix with rank $p(<n)$, and $\epsilon^{T}=\left(\epsilon_{1}, \ldots, \epsilon_{n}\right)$, where $\epsilon_{1}, \ldots, \epsilon_{n}$ are independent normal random variables with mean zero and variance σ^{2}. Find the least squares estimator $\hat{\beta}$ of β and find its distribution. Define the residual sum of squares $R S S$ and write down an estimator for σ^{2}. Explain how to test $H_{0}: \beta_{1}=0$ in the above model.

In the edited R output below, NO2 contains observations of the nitrogen dioxide concentration in a particular location for 25 days, and, for the same 25 days, wind contains the average windspeed (in miles per hour), maxtemp contains the maximum temperature (in degrees Fahrenheit), and insol contains the insolation (a measure of solar radiation energy, in langleys per day). Write down the model fitted in model1.lm and interpret in detail the output to summary (model1.lm).

```
> model1.lm <- lm(NO2 ~ wind + maxtemp + insol)
> summary(model1.lm)
Call:
lm(formula = NO2 ~ wind + maxtemp + insol)
Residuals:
\begin{tabular}{rrrrr} 
Min & \(1 Q\) & Median & 3Q & Max \\
-2.3052 & -1.1710 & -0.4990 & 0.9823 & 3.4033
\end{tabular}
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.784916 7.979647 0.474 0.6402
wind -0.527410 0.224904 -2.345 0.0289
maxtemp }0.124991 0.075173 1.663 0.1112 
insol -0.005259 0.006637 -0.792 0.4370
```

Residual standard error: 1.844 on 21 degrees of freedom
Multiple R-Squared: 0.6533 , Adjusted R-squared: 0.6037

In the edited output below, explain the output to the stepAIC directive. Comment briefly on the output to boxcox (model1.lm) which is shown in Figure 1.

```
> library(MASS)
> stepAIC(model1.lm,
    scope = list(upper = ~ wind + maxtemp + insol, lower=~1), test="F")
Start: AIC = 34.25
    NO2 ~ wind + maxtemp + insol
Df Sum of Sq RSS AIC F Value Pr(F)
- insol 1 2.136 73.564 32.982 0.628 0.43700
<none> 71.428 34.246
- maxtemp 1 9.403 80.832 35.337 2.765 0.11123
- wind 1 18.705 90.133 38.060 5.499 0.02893
```

```
Step: AIC = 32.98
    NO2 ~ wind + maxtemp
    Df Sum of Sq RSS AIC F Value Pr(F)
<none> 73.564 32.982
- maxtemp 1 7.434 80.998 33.389 2.223 0.15016
+ insol 1 2.136 71.428 34.246 0.628 0.43700
- wind 1 23.684 97.248 37.960 7.083 0.01426
Call: lm(formula = NO2 ~ wind + maxtemp)
Coefficients:
\begin{tabular}{rrr} 
(Intercept) & wind & maxtemp \\
4.4368 & -0.5734 & 0.1040
\end{tabular}
```


Figure 1: Output to boxcox (modell.lm)

Let $Y_{i j k}, i=1, \ldots, I, j=1, \ldots, J, k=1, \ldots, K$, be random variables with

$$
\begin{equation*}
Y_{i j k}=\mu+\alpha_{i}+\beta_{j}+\epsilon_{i j k} \tag{1}
\end{equation*}
$$

where the $\epsilon_{i j k}$'s are independent normally distributed random variables with mean zero and variance $\sigma^{2}, \sum_{i=1}^{I} \alpha_{i}=0$ and $\sum_{j=1}^{J} \beta_{j}=0$. By considering

$$
S\left(\mu, \alpha_{1}, \ldots, \alpha_{I}, \beta_{1}, \ldots, \beta_{J}\right)=\sum_{i, j, k}\left(Y_{i j k}-\mu-\alpha_{i}-\beta_{j}\right)^{2}
$$

show that the least squares estimates of μ, α_{i} and β_{j} are respectively

$$
\hat{\mu}=\bar{Y}_{+++}, \quad \hat{\alpha}_{i}=\bar{Y}_{i++}-\bar{Y}_{+++} \quad \text { and } \quad \hat{\beta}_{j}=\bar{Y}_{+j+}-\bar{Y}_{+++}
$$

where $\bar{Y}_{i++}=\sum_{j, k} Y_{i j k} /(J K), \bar{Y}_{+j+}=\sum_{i, k} Y_{i j k} /(I K)$ and $\bar{Y}_{+++}=\sum_{i, j, k} Y_{i j k} /(I J K)$.
Find the residual sum of squares $R S S_{1}$ for this model. Find the residual sum of squares $R S S_{0}$ for the null model $Y_{i j k}=\mu+\epsilon_{i j k}$. Show that the reduction in the residual sum of squares due to including the β_{j} 's into the null model is the same as the reduction in the residual sum of squares due to including the β_{j} 's into the model $Y_{i j k}=\mu+\alpha_{i}+\epsilon_{i j k}$.

For a dataset with 3 levels for factor A, 2 levels for factor B, and with 2 replicates for each combination of factor levels, model (1) is fitted and the following analysis of variance table is obtained.

Analysis of Variance Table

Response: y
Df \quad Sum Sq
A $\quad * \quad 12.7400$
B $\quad * \quad 0.4033$
Residuals * 2.6867
where the degrees of freedom have been replaced by asterisks. What should the degrees of freedom be? Write down the values of the residual sums of squares for the following models (i) the null model, (ii) model (1), (iii) the model $Y_{i j k}=\mu+\alpha_{i}+\epsilon_{i j k}$ and (iv) the model $Y_{i j k}=\mu+\beta_{j}+\epsilon_{i j k}$. How could you check whether there is an interaction between the factors A and B ?

3 Let Y_{1}, \ldots, Y_{n} be independent Poisson random variables, with $\mathbb{E}\left(Y_{i}\right)=\mu_{i}$. Assume that

$$
\log \left(\mu_{i}\right)=\beta^{T} x_{i}, \quad i=1, \ldots, n,
$$

where β is p-dimensional vector of parameters and x_{i} is a p-dimensional vector of known covariate values for the i th observation. Explain why this is a generalised linear model. Find the equations satisfied by the maximum likelihood estimator $\hat{\beta}$ of β based on observations y_{1}, \ldots, y_{n}. Find the deviance for this model. If the first component of x_{i} is 1 for all i, show that $\sum_{i=1}^{n} y_{i}=\sum_{i=1}^{n} \hat{\mu}_{i}$, where $\hat{\mu}_{i}=\exp \left(\hat{\beta}^{T} x_{i}\right)$.

The number of different plant species was recorded for each of 90 plots, each with different biomass values. Thirty of the plots had low soil ph-level, thirty had medium soil ph-level and thirty had high soil ph-level. In the R commands below, nspecies contains the numbers of species for each of the plots, biomass contains the biomass values and ph is a factor with three levels (low, medium and high).

```
> model1.glm <- glm(nspecies ~ biomass * ph, poisson)
> model2.glm <- glm(nspecies ~ biomass + ph, poisson)
```

The deviances for model1.glm and model2.glm are 83.2 and 99.2 respectively. Write down in algebraic form the models that have been fitted, and illustrate with appropriate sketch graphs. What do you conclude about how the number of species depends on the biomass for the different soil ph-levels?

4 A statistician has data on the incidence of melanoma in women in two American cities, Minneapolis-Saint Paul in Minnesota and Forth Worth in Texas, for age groups, as shown in the (edited) R ouput below. In the output, age and city are factors giving respectively the age groups as shown and the city (0 is Minneapolis-Saint Paul and 1 is Fort Worth), pop and cases respectively contain the number in the population and the number of melanoma cases in the relevant age group and city. The statistician carries out two separate analyses, both using corner-point constraints.
(a) Comment on any obvious deficiencies in the data.
(b) State the model fitted in Analysis 1 and interpret the output in detail.
(c) What model is fitted in Analysis 2?
(d) Briefly compare and discuss the two analyses.

> propcases $<-$ cases/pop					
		cases	city	age	pop

```
# Analysis 1:
```

```
> melanoma1.glm <- glm(propcases ~ age + city, binomial, weights = pop)
> anova(melanoma1.glm, test="Chisq")
```

Analysis of Deviance Table
Model: binomial, link: logit
Response: propcases
Terms added sequentially (first to last)

| | Df | Deviance | Resid. Df | Resid. Dev | P(>\|Chi|) |
| :--- | ---: | ---: | ---: | ---: | ---: |
| NULL | | | 14 | 2330.46 | |
| age | 7 | 2098.19 | 7 | 232.28 | 0.00 |
| city | 1 | 227.12 | 6 | 5.15 | $2.526 e-51$ |

```
> summary(melanoma1.glm)
Call:
glm(formula = propcases ~ age + city, family = binomial, weights = pop)
Deviance Residuals:
\begin{tabular}{rrrrr} 
Min & \(1 Q\) & Median & 3Q & Max \\
-1.2830 & -0.3355 & 0.0000 & 0.3927 & 1.0820
\end{tabular}
Coefficients:
    Estimate Std. Error z value Pr(>|z|)
\begin{tabular}{lrrrr} 
(Intercept) & -11.69364 & 0.44923 & -26.030 & \(<2 \mathrm{e}-16\) \\
age25-34 & 2.62915 & 0.46747 & 5.624 & \(1.86 \mathrm{e}-08\) \\
age35-44 & 3.84627 & 0.45467 & 8.459 & \(<2 \mathrm{e}-16\) \\
age45-54 & 4.59538 & 0.45104 & 10.188 & \(<2 \mathrm{e}-16\) \\
age55-64 & 5.08901 & 0.45031 & 11.301 & \(<2 \mathrm{e}-16\) \\
age65-74 & 5.65031 & 0.44976 & 12.563 & \(<2 \mathrm{e}-16\) \\
age75-84 & 6.20887 & 0.45756 & 13.570 & \(<2 \mathrm{e}-16\) \\
age85+ & 6.18346 & 0.45783 & 13.506 & \(<2 \mathrm{e}-16\) \\
city1 & 0.85492 & 0.05969 & 14.322 & \(<2 \mathrm{e}-16\)
\end{tabular}
(Dispersion parameter for binomial family taken to be 1)
    Null deviance: 2330.4637 on 14 degrees of freedom
Residual deviance: 5.1509 on 6 degrees of freedom
Number of Fisher Scoring iterations: 4
# Analysis 2:
> melanoma2.glm <- glm(cases ~ offset(log(pop)) + age + city, poisson)
> anova(melanoma2.glm, test = "Chisq")
Analysis of Deviance Table
Model: poisson, link: log
Response: cases
Terms added sequentially (first to last)
    Df Deviance Resid. Df Resid. Dev P(>|Chi|)
NULL 14 2327.29
\begin{tabular}{llllll} 
age & 7 & 2095.56 & 7 & 231.73 & 0.00
\end{tabular}
```

(a) Explain the following statistical terms used in survival analysis
(i) survival data,
(ii) right censoring,
(iii) left truncation.
(b) An academic researcher interested in Indian cuisine approaches two statisticians, Statistician A and Statistician B. The researcher has collected data on a sample of Indian restaurants, located in Cambridge and the surrounding villages, that were operational during all or part of the five-year period from the 1st January 2000 to 31st December 2005, and followed them up until the earlier of their date of closure and 31st December 2007.

The data collected comprise five variables:

obsage:	either the length of time the restaurant was in business, if closed down before the end of follow-up or the length of time the restaurant has been operating at the end of follow-up period, if still open
ageatentry: \quadthe length of time the restaurant had been in operation at entry into the study.	
status:	the closure status of the restaurant (status $=\mathbf{1}$, if closed down; status $=\mathbf{0}$, if still in business)
size:	the size of the restaurant (small, medium or large, coded 0,1, and 2 respectively),, camb:\quadcamb $=\mathbf{1}$ if the restuarant is in Cambridge, and camb $=\mathbf{0}$ if it is in a village.

All time variables are measured in years.
The academic is particularly interested in determining the proportion of Indian restaurants open for 5 years or more and open for 10 years or more, and asked the two statisticians if they could analyse the data collected. Both statisticians recognise that this is a survival data problem, and use the R statistical software environment to construct Kaplan-Meier curves. However, Statisticians A's and B's results for the 5-year and 10-year survival probabilities differ from one another, which confuses the researcher.

The researcher approaches you with the two statisticians' R codes and results, which are shown in the R output provided, and asks for your assistance.
(i) Examine the R output provided and determine, with explanation, which of the two statisticians has performed the more appropriate analysis for constructing the Kaplan-Meier curve. From your choice of the more appropriate analysis, what are the 5 -year and 10-year survival probabilities? (The precision attached to point estimates is required.)
(ii) Also provided is the R output from a further analysis of the data performed by one of the statisticians. Comment in detail on the R commands, the analysis done and the results. (Derivations of the underlying techniques, e.g. for $\operatorname{coxph}()$, are not required.) What additional checks should be made before the results from this analysis are passed on to the academic researcher?

\# Statistician A

```
> srvobj <- Surv(obsage, status)
> summary(survfit(srvobj~1))
Call: survfit(formula = srvobj ~ 1)
```

time	n.risk	n.event	survival	std.err	lower 95% CI	upper 95% CI
0.52	60	1	0.983	0.0165	0.951	1.000
0.63	59	1	0.967	0.0232	0.922	1.000
0.69	58	1	0.950	0.0281	0.896	1.000
0.84	57	1	0.933	0.0322	0.872	0.999
1.05	56	1	0.917	0.0357	0.849	0.989
1.32	55	1	0.900	0.0387	0.827	0.979
1.35	54	1	0.883	0.0414	0.806	0.968
1.48	53	1	0.867	0.0439	0.785	0.957
1.59	52	1	0.850	0.0461	0.764	0.945
1.65	51	1	0.833	0.0481	0.744	0.933
1.69	50	1	0.817	0.0500	0.724	0.921
1.86	49	1	0.800	0.0516	0.705	0.908
2.20	48	1	0.783	0.0532	0.686	0.895
2.21	47	1	0.767	0.0546	0.667	0.882
2.43	46	1	0.750	0.0559	0.648	0.868
2.68	45	1	0.733	0.0571	0.630	0.854
3.10	44	1	0.717	0.0582	0.611	0.840
3.31	43	1	0.700	0.0592	0.593	0.826
3.69	42	1	0.683	0.0601	0.575	0.812
4.40	41	1	0.667	0.0609	0.557	0.797
4.52	40	1	0.650	0.0616	0.540	0.783
5.24	38	1	0.633	0.0623	0.522	0.768
6.03	37	1	0.616	0.0629	0.504	0.752
6.47	36	1	0.599	0.0634	0.486	0.737
7.18	33	1	0.581	0.0641	0.468	0.721
7.30	32	1	0.562	0.0646	0.449	0.704
7.34	31	1	0.544	0.0650	0.431	0.688
7.42	30	1	0.526	0.0653	0.412	0.671
7.67	29	1	0.508	0.0655	0.394	0.654
7.76	26	1	0.488	0.0659	0.375	0.636
8.29	21	1	0.465	0.0667	0.351	0.616
9.19	16	1	0.436	0.0686	0.320	0.594
9.90	15	1	0.407	0.0699	0.291	0.570
10.58	13	1	0.376	0.0712	0.259	0.545
11.16	11	1	0.342	0.0724	0.225	0.518
12.42	6	1	0.285	0.0797	0.164	0.493
					0	

```
# Statistician B
> srvobj <- Surv(time = ageatentry, time2 = obsage,
                                    event = status, type = "counting")
> summary(survfit(srvobj~1))
Call: survfit(formula = srvobj ~ 1)
```

time	n.risk	n.event	survival	std.err	lower 95% CI	upper 95% CI
0.52	25	1	0.960	0.0392	0.886	1.000
0.63	26	1	0.923	0.0523	0.826	1.000
0.69	26	1	0.888	0.0611	0.775	1.000
0.84	27	1	0.855	0.0671	0.733	0.997
1.05	30	1	0.826	0.0707	0.699	0.977
1.32	30	1	0.799	0.0735	0.667	0.957
1.35	29	1	0.771	0.0759	0.636	0.935
1.48	29	1	0.745	0.0778	0.607	0.914
1.59	31	1	0.721	0.0789	0.581	0.893
1.65	30	1	0.697	0.0799	0.556	0.872
1.69	29	1	0.672	0.0807	0.532	0.851
1.86	28	1	0.648	0.0813	0.507	0.829
2.20	28	1	0.625	0.0816	0.484	0.808
2.21	27	1	0.602	0.0818	0.461	0.786
2.43	27	1	0.580	0.0818	0.440	0.764
2.68	26	1	0.558	0.0816	0.419	0.743
3.10	26	1	0.536	0.0812	0.398	0.721
3.31	26	1	0.515	0.0807	0.379	0.701
3.69	26	1	0.496	0.0800	0.361	0.680
4.40	29	1	0.479	0.0790	0.346	0.661
4.52	29	1	0.462	0.0780	0.332	0.643
5.24	30	1	0.447	0.0769	0.319	0.626
6.03	34	1	0.434	0.0758	0.308	0.611
6.47	33	1	0.420	0.0746	0.297	0.595
7.18	30	1	0.406	0.0734	0.285	0.579
7.30	29	1	0.392	0.0722	0.274	0.563
7.34	28	1	0.378	0.0710	0.262	0.546
7.42	27	1	0.364	0.0697	0.250	0.530
7.67	27	1	0.351	0.0684	0.239	0.514
7.76	24	1	0.336	0.0671	0.227	0.497
8.29	21	1	0.320	0.0658	0.214	0.479
9.19	16	1	0.300	0.0647	0.197	0.458
9.90	15	1	0.280	0.0634	0.180	0.436
10.58	13	1	0.259	0.0621	0.162	0.414
11.16	11	1	0.235	0.0607	0.142	0.390
12.42	6	1	0.196	0.0620	0.105	0.364

```
# Further analysis performed on the "Indian restaurant" data
> size <- factor(size)
> size <- relevel(size,2)
> summary(coxph(srvobj ~ camb + size))
Call: coxph(formula = srvobj ~ camb + size)
    n = 60
        coef exp(coef) se(coef) z p
camb -0.803 0.448 0.344 -2.335 0.02
size1 -0.322 0.724 0.482 -0.669 0.50
size3 -0.224 0.799 0.375 -0.598
        exp(coef) exp(-coef) lower . }95\mathrm{ upper . }9
\begin{tabular}{lllll} 
camb & 0.448 & 2.23 & 0.228 & 0.879 \\
size1 & 0.724 & 1.38 & 0.282 & 1.863 \\
size3 & 0.799 & 1.25 & 0.383 & 1.666
\end{tabular}
Rsquare = 0.087 (max possible= 0.979)
Likelihood ratio test = 5.45 on 3 df, p = 0.142
Wald test = 5.76 on 3 df, p = 0.124
Score (logrank) test = 6.01 on 3 df, p = 0.111
```

END OF PAPER

