## PAPER 41

## APPLIED STATISTICS

## Attempt FOUR questions.

There are $\boldsymbol{F I V E}$ questions in total.
The questions carry equal weight.

STATIONERY REQUIREMENTS
Cover sheet
Treasury Tag
Script paper

SPECIAL REQUIREMENTS
None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1 The data set given below was taken from The Independent, November 21, 2001, where it appeared under the headline 'Supermarkets to defy bar on cheap designer goods'.

| How prices compare: prices | given | in | UK pounds. |  |  |
| :--- | ---: | ---: | :--- | :--- | :--- |
| Item | UK | Sweden | France | Germany | US |
| Levi 501 jeans | 46.16 | 47.63 | 42.11 | 46.06 | 27.10 |
| Dockers K1 khakis | 58.00 | 54.08 | 47.22 | 46.20 | 32.22 |
| Timberland women's boots | 111.00 | 104.12 | 89.43 | 93.36 | 75.42 |
| DieselKultar men's jeans | 60.00 | 43.35 | 43.50 | 44.48 | NA |
| Timberland cargo pants | 53.33 | 48.58 | 43.54 | 58.66 | 31.70 |
| Gap men's sweater | 34.50 | NA | 26.93 | 27.26 | 28.76 |
| Ralph Lauren polo shirt | 49.99 | 42.04 | 36.41 | 40.26 | 32.48 |
| H\&M cardigan | 19.99 | 17.31 | 18.17 | 15.28 | NA |

Discuss carefully the (slightly edited) $R$ analysis given below. This reads the data from the file "dprices". You should interpret the commands and the corresponding results.

What would you expect as the result of the final command?

```
> p = scan("dprices")
Read 40 items
> summary(p)
            Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
    15.28 32.22 43.54 46.94 53.33 111.00 3.00
> item = scan(,"")
    jeans khakis boots Djeans cpants sweater shirt cardigan
9:
Read 8 items
> country = scan(,"")
    1: UK Sweden France Germany US
    6:
    Read 5 items
> Item = gl(8,5,length=40, labels=item)
> Country = gl(5,1, length=40, labels= country)
> plot(Country,p)
> plot(Item,p)
> first.lm = lm(p ~ Country+ Item, na.action=na.omit)
> anova(first.lm)
Analysis of Variance Table
```

```
Response: p
    Df Sum Sq Mean Sq F value Pr(>F)
Country 4 1115.6 278.9 10.573 3.732e-05 ***
Item }\quad7\quad16910.2 2415.7 91.583 3.188e-16 *****
Residuals 25 659.4 26.4
> anova(lm(p ~ Item + Country, na.action=na.omit))
Analysis of Variance Table
Response: p
    Df Sum Sq Mean Sq F value Pr(>F)
Item 7 16409.0 2344.1 88.868 4.566e-16 ***
Country 4 1616.7 404.2 15.323 1.859e-06 ***
Residuals 25 659.4 26.4
> summary(first.lm)
    Coefficients:
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \multicolumn{5}{|l|}{Estimate Std. Error t value \(\operatorname{Pr}(>|t|)\)} \\
\hline (Intercept) & 50.799 & 2.826 & 17.974 & 8.27e-16 & \\
\hline CountrySweden & -5.224 & 2.680 & -1.949 & 0.06260 & \\
\hline CountryFrance & -10.708 & 2.568 & -4.170 & 0.00032 & *** \\
\hline CountryGermany & -7.676 & 2.568 & -2.989 & 0.00620 & ** \\
\hline CountryUS & -21.328 & 2.824 & -7.554 & 6.59e-08 & *** \\
\hline Itemkhakis & 5.732 & 3.248 & 1.765 & 0.08984 & \\
\hline Itemboots & 52.854 & 3.248 & 16.272 & 8.23e-15 & *** \\
\hline ItemDjeans & 2.935 & 3.477 & 0.844 & 0.40661 & \\
\hline Itemcpants & 5.350 & 3.248 & 1.647 & 0.11206 & \\
\hline Itemsweater & -11.509 & 3.473 & -3.314 & 0.00281 & ** \\
\hline Itemshirt & -1.576 & 3.248 & -0.485 & 0.63177 & \\
\hline Itemcardigan & -27.210 & 3.477 & -7.825 & 3.51e-08 & \\
\hline
\end{tabular}
    Residual standard error: 5.136 on 25 degrees of freedom
    Multiple R-Squared: 0.9647, Adjusted R-squared: 0.9492
    F-statistic: 62.12 on 11 and 25 DF, p-value: 2.4e-15
>summary(lm(p~ Item*Country, na.action=na.omit)) #final command
```

2 Suppose that $y_{1}, \ldots, y_{n}$ are independent Poisson observations, with $\mathbb{E}\left(y_{i}\right)=\mu_{i}$, and $\log \mu_{i}=\mu+\beta x_{i}$, for $1 \leqslant i \leqslant n$. Find equations for $(\hat{\mu}, \hat{\beta})$, the maximum likelihood estimators of $(\mu, \beta)$, and hence show that for large $n$,

$$
\operatorname{var}(\hat{\beta}) \simeq \sum \hat{\mu}_{i} /\left(\sum \hat{\mu}_{i} \sum x_{i}^{2} \hat{\mu}_{i}-\left(\sum x_{i} \hat{\mu}_{i}\right)^{2}\right)
$$

where $\hat{\mu}_{i}=\mu_{i}(\hat{\mu}, \hat{\beta})$. If a practical problem showed you that
(i) the deviance for fitting the above model was 27.2 , with 29 df
(ii) $\hat{\beta}=6.73$, $\operatorname{se}(\hat{\beta})=8.04$
what would you conclude?

3 (i) Assume that the $n$-dimensional observation vector $Y$ may be written

$$
\Omega: Y=X \beta+\epsilon
$$

where $X$ is a given $n \times p$ matrix of rank $p, \beta$ is an unknown vector, and

$$
\epsilon \sim N_{n}\left(0, \sigma^{2} I\right)
$$

Let $Q(\beta)=(Y-X \beta)^{T}(Y-X \beta)$. Show that $Q(\beta)$ is a convex function of $\beta$, and find $\hat{\beta}$, the least-squares estimator of $\beta$. Show also that

$$
Q(\hat{\beta})=Y^{T}(I-H) Y
$$

where $H$ is a matrix that you should define.
(ii) Let $\hat{\epsilon}=Y-X \hat{\beta}$. Find the distribution of $\hat{\epsilon}$, and discuss how this may be used to perform diagnostic checks of $\Omega$.
(iii) Suppose that your data actually corresponded to the model

$$
Y_{i} \sim N\left(\mu_{i}, \sigma_{i}^{2}\right), 1 \leqslant i \leqslant n, \quad \text { with } \sigma_{i}^{2} \propto \mu_{i}^{2} .
$$

How would your diagnostic checks detect this, and what transformation of $Y_{i}$ would be appropriate?

4 The British Medical Journal, December 1, 2004 published "Prospective cohort study of cannabis use, predisposition for psychosis, and psychotic symptoms in young people" by C. Henquet and others. This included the following table of data, (slightly simplified here).

|  | Cannabis use <br> at baseline | Number with <br> psychosis outcome | Number without <br> psychosis outcome | Risk of psychotic <br> systems at follow up |
| :---: | :---: | :---: | :---: | :---: |
| p.no $\{$ | none | 294 | 1642 | $15 \%$ |
|  | some | 59 | 216 | $21 \%$ |
|  | none | 47 | 133 | $26 \%$ |
|  | some | 23 | 22 | $51 \%$ |

Here the first 2 rows of the table, "p.no" correspond to those with no predisposition for psychosis at baseline, and the second 2 rows of the table "p.yes", correspond to those with predisposition for psychosis at baseline.

Discuss carefully the $R$ output given below. (This output has been slightly edited, in the interests of simplification.)

```
UNIVERSITY OF
    CAMBRIDGE
```

cannabis = read.table("cannabis", header=T)

```
cannabis = read.table("cannabis", header=T)
> cannabis
    c.use with without predisposition
    1 none 294 1642 no
    2 some 59 216 no
    3 none 47 133 yes
    4 some 23 22 yes
>
> chisq.test(rbind(c(341,1775),c(82,238)))
Pearson's Chi-squared test
data: rbind(c(341, 1775), c(82, 238))
X-squared = 16.8618, df = 1, p-value = 4.02e-05
> attach(cannabis) ; tot = with + without
> summary(glm(with/tot ~ c.use + predisposition, binomial, weights=tot))
Coefficients:
\begin{tabular}{lrrrr} 
& Estimate Std. Error z value \(\operatorname{Pr}(>|\mathrm{z}|)\) \\
(Intercept) & -1.73881 & 0.06284 & \(-27.673<2 \mathrm{e}-16 * * *\) \\
c.usesome & 0.53847 & 0.14257 & 3.777 & 0.000159 *** \\
predispositionyes & 0.82824 & 0.15632 & 5.298 & \(1.17 \mathrm{e}-07 * * *\)
\end{tabular}
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
Residual deviance: 3.0733 on 1 degrees of freedom
AIC: 31.766
Number of Fisher Scoring iterations: 3
summary(glm(with/tot ~ c.use *predisposition, binomial, weights=tot))
```


## Coefficients:

```
                Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.72009 0.06333 -27.162 < 2e-16 ***
c.usesome
    0.42235 0.15997 2.640 0.008285 **
predispositionyes 0.67989 0.18112 3.754 0.000174 ***
c.usesome:predispositionyes 0.66230 0.37857 1.749 0.080209 .
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1' ' 1
(Dispersion parameter for binomial family taken to be 1)
```

Residual deviance: $2.8377 \mathrm{e}-13$ on 0 degrees of freedom
AIC: 30.692
Number of Fisher Scoring iterations: 3

5 The table below summarises the results from an hypothetical randomised controlled trial to determine the cost-effectiveness of a new drug regime versus the standard regime, which is already in use in the UK National Health Service (NHS). The 2 regimes are designed to prolong the survival time of patients with small cell lung cancer. If the new drug regime is found to offer good value for money by the National Institute of Clinical Excellence (NICE), then it may be approved for reimbursement under the NHS.
(i) Estimate the incremental cost-effectiveness ratio (ICER) from the table (providing the appropriate units of the ICER).
(ii) Show how Fieller's method may be used to calculate a $95 \%$ confidence interval (CI) for the ICER (stating any assumptions made). Suggest an alternative method of constructing a $95 \%$ CI for the ICER.
(iii) What are some of the problems with interpreting cost-effectiveness ratios?
(iv) Describe two other methods used for presenting cost-effectiveness results.

|  | New Drug Regime <br> $(n=64)$ | Standard Drug Regime <br> $(n=65)$ | Difference in <br> Means |
| :--- | :---: | :---: | :---: |
| Mean (SE) survival <br> times in days | 368 days <br> $(\mathrm{se}=12$ days $)$ | 323 days <br> $(\mathrm{se}=9$ days $)$ | $\Delta E=45$ days <br> $(\mathrm{se}=15$ days $)$ |
| Mean (SE) costs in $£$ | $£ 2840$ <br> $(\mathrm{se}=£ 240)$ | $£ 1040$ <br> $(\mathrm{se}=£ 180)$ | $\Delta C=£ 1800$ <br> $(\mathrm{se}=£ 300)$ |
| Correlation between $\Delta E$ and $\Delta C$ |  |  | 0.5 |

## END OF PAPER

Paper 41

