PAPER 37

Applied Statistics

Attempt FOUR questions.

There are five questions in total.
The questions carry equal weight.

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1 (i) Let Y_{1}, \ldots, Y_{n} be independent Poisson variables, with

$$
\mathbb{E}\left(Y_{i}\right)=\mu_{i}, \text { and } \log \mu_{i}=\beta^{T} x_{i}, \quad \text { for } 1 \leqslant i \leqslant n
$$

Discuss carefully the estimation of the unknown p-dimensional vector β. (You may assume that x_{1}, \ldots, x_{n} are known covariate vectors of the same dimension as β.)
(ii) Suppose now that the observations Y_{1}, \ldots, Y_{n} are independent, with $E\left(Y_{i}\right)=\mu_{i}$, and $\operatorname{var}\left(Y_{i}\right)=\phi \mu_{i}$, and $\log \left(\mu_{i}\right)=\beta x_{i}$, for some unknown ϕ and unknown scalar parameter β. Let β_{0} be the true value of this unknown parameter.

Our aim is to estimate β, but ϕ is an unknown 'dispersion' parameter. Clearly $\phi>1$ will correspond to over-dispersion relative to the Poisson. In the absence of knowledge of ϕ, we choose our estimator $\hat{\beta}$ to maximise the function $l_{p}(\beta)$, where

$$
l_{p}(\beta)=-\Sigma \mu_{i}+\beta \Sigma x_{i} y_{i}+\text { constant }
$$

(Thus $l_{p}()$ is in general not the 'correct' loglikelihood function: we work out below whether this is a serious problem.)

By expanding

$$
\frac{\partial l_{p}(\beta)}{\partial \beta}
$$

evaluated at $\hat{\beta}$, about β_{0}, show that $\left(\hat{\beta}-\beta_{0}\right)$ is approximately equal to $\left(I\left(\beta_{0}\right)\right)^{-1} U\left(\beta_{0}\right)$, where

$$
U(\beta)=\frac{\partial l_{p}(\beta)}{\partial \beta}, \text { and } I(\beta)=\Sigma x_{i}^{2} \exp \beta x_{i} .
$$

and hence show that, approximately,

$$
E(\hat{\beta})=\beta_{0}, \text { and } \operatorname{var}(\hat{\beta})=\phi\left(I\left(\beta_{0}\right)\right)^{-1}
$$

2 'Commissioned analysis of surgical performance by using routine data: lessons from the Bristol inquiry' is a paper published in J.R. Statistical Soc. A in 2002, by David J. Spiegelhalter and others. It includes the data given in the table below, which refers to mortality due to cardiac surgery at each of 12 UK centres, of which the Bristol Royal Infirmary is Centre 1. Thus, in 1984-87, there were 63 babies under 1 year old for example, who received cardiac surgery at Centre 1 , and of these 63 babies, 16 tragically died as a result of surgery. Centre 1 is of special interest for this inquiry.
(i) If you restrict attention to the years 1984-7 only, how would you test whether the mortality rate is constant over the 12 Centres?
(ii) Now restrict attention to the second and third of the three time periods, and describe briefly how to fit the model

$$
g\left(\pi_{i j}\right)=\mu+\alpha_{i}+\beta_{j}, \quad \text { for } i=1, \ldots, 12 \text { and } j=2,3,
$$

where $g(\cdot)$ is a suitable link function, $\pi_{i j}$ is the probability of death for a baby at Centre i during the time period j, and $\alpha_{1}=0, \beta_{2}=0$.

Discuss carefully the results of the model-fitting, given in the S-Plus output at the end of the question. (You may assume that the factors Centre, Year have been set up correctly.)

Mortality due to cardiac surgery for babies under 1 year
Table

	1984-87	1988-90	1991-Mar95
Centre	r1 t1	r2 t2	r3 t3
1	1663	31108	43181
2	1166	22107	27200
3	1036	35135	26157
4	00	1445	15142
5	2383	26104	36217
6	48242	34198	49417
7	19186	25184	27253
8	55236	57362	57369
9	1568	1179	28214
10	28109	3490	31184
11	3077	57438	67740
12	28187	21121	32268

```
> summary(glm(r/tot ~ Centre + Year,binomial, weights = tot), cor=F)
Call: glm(formula = r/tot ~ Centre + Year, family = binomial,
weights = tot)
Deviance Residuals:
    Min 1Q Median 3Q Max
    -1.454029 -0.356005 0.002994555 0.3386306 1.773282
Coefficients:
    Value Std. Error t value
(Intercept) -0.80958468 0.14281655 -5.6687035
    Centre2 -0.58775796 0.20675867 -2.8427247
    Centre3 -0.30568326 0.19815078 -1.5426801
    Centre4 -0.57335447 0.24379181 -2.3518201
    Centre5 -0.34389804 0.19609795 -1.7537055
    Centre6 -0.77363166 0.17978907 -4.3029961
    Centre7 -0.96239712 0.20072879 -4.7945146
    Centre8 -0.67930844 0.17002204 -3.9954139
    Centre9 -0.76597500 0.21928367 -3.4930782
    Centre10 -0.08223982 0.19661703 -0.4182741
    Centre11 -1.07947416 0.16546053-6.5240585
    Centre12 -0.75768827 0.20071357 -3.7749729
        Year -0.42675763 0.07880675 -5.4152418
(Dispersion Parameter for Binomial family taken to be 1 )
    Null Deviance: 119.0659 on 23 degrees of freedom
Residual Deviance: 15.73891 on 11 degrees of freedom
Number of Fisher Scoring Iterations: 5
```

3 The S-Plus output below gives 2 standard statistical tests for the small data sets x, y. Describe carefully how the statistics and the p-values are calculated, for the 2 tests, and compare their outcomes for the data given.

```
>x _ scan()
3.7 2.1 4.5 7.1
>y_scan()
    6.1 7.9 10.3 11.4 13.7
>summary(x)
    Min. 1st Qu. Median Mean 3rd Qu. Max
        2.1 3.3 4.1 4.35 5.15 7.1
>summary(y)
    Min. 1st Qu. Median Mean 3rd Qu. Max.
        6.1 7.9 10.3 9.88 11.4 13.7
>t.test(x,y, alt="less")
    Standard Two-Sample t-Test
data: x and y
t = -3.1364, df = 7, p-value = 0.0082
alternative hypothesis: true difference in means is less than 0
95 percent confidence interval:
    NA -2.189557
sample estimates:
    mean of x mean of y
            4.35 9.88
> rank(c(x,y))
[1] 2 1 3 5 4 6 7 8 9
>wilcox.test(x,y, alt="less")
    Exact Wilcoxon rank-sum test
data: x and y
rank-sum statistic W = 11, n = 4, m = 5, p-value = 0.0159
alternative hypothesis: true mu is less than 0
```

4 On December 5, 2003, the Times Business News published the following table, under the headline "Serving up a Sterling Christmas". This shows the forecasts for Europe's online Christmas sales, for the countries UK, France, Germany and the rest of Europe, for each of 13 different types of goods, ie Software, Books ,..., Leisure Travel. The sums given are in millions of Euros.

Discuss carefully the S-Plus analysis which follows, interpreting the commands and the (slightly edited) output.

How would the analysis have been affected if 2 entries of the table of data had been unavailable?

	Table of data			
	UK	France	Germany	RestofE
Software	88.5	13.0	73.5	76.2
Books	378.9	72.2	425.7	393.2
Music	300.2	59.2	169.4	178.5
Videos/DVDs	249.8	62.5	129.5	134.4
EventTickets	115.0	26.6	82.6	142.3
Clothing	394.2	118.7	456.7	197.4
Toys	66.7	17.1	96.0	42.2
VideoGames	93.9	13.6	56.3	56.0
SportsEquip	17.2	1.0	18.6	13.0
ElectronicGds	309.1	90.3	244.2	206.4
Groceries	599.7	83.3	308.0	107.0
Housewares	129.0	30.1	97.4	41.5
LeisureTravel	436.1	72.6	279.0	324.3

```
> spend <- scan("o.data")
> goods <- 1:13
> country <- c("UK","France","Germany","restofE")
> z <- expand.grid(country,goods) ; z[1:9,]
> Goods <- z[,2] ; Goods <- factor(Goods)
> Country <- z[,1]
> first.lm <- lm(spend ~ Goods + Country)
> summary(first.lm, cor=F)
Call: lm(formula = spend ~ Goods + Country)
Residuals:
    Min 1Q Median 3Q Max
-157.2 -37.82 1.202 37.67 238.2
```

Coefficients:

	Value	Std. Error	t value	$\operatorname{Pr}(>\|t\|)$
(Intercept)	149.8269	44.9205	3.3354	0.0020
Goods2	254.7000	57.2626	4.4479	0.0001
Goods3	114.0250	57.2626	1.9913	0.0541
Goods4	81.2500	57.2626	1.4189	0.1645
Goods5	28.8250	57.2626	0.5034	0.6178
Goods6	228.9500	57.2626	3.9982	0.0003
Goods7	-7.3000	57.2626	-0.1275	0.8993
Goods8	-7.8500	57.2626	-0.1371	0.8917
Goods9	-50.3500	57.2626	-0.8793	0.3851
Goods10	149.7000	57.2626	2.6143	0.0130
Goods11	211.7000	57.2626	3.6970	0.0007
Goods12	11.7000	57.2626	0.2043	0.8393
Goods13	215.2000	57.2626	3.7581	0.0006
CountryFrance	-193.7000	31.7636	-6.0982	0.0000
CountryGermany	-57.0308	31.7636	-1.7955	0.0810
CountryrestofE	-97.3769	31.7636	-3.0657	0.0041

Residual standard error: 80.98 on 36 degrees of freedom Multiple R-Squared: 0.7743
F-statistic: 8.232 on 15 and 36 degrees of freedom, the p-value is $1.254 \mathrm{e}-07$

```
> next.lm<- lm(log(spend) ~ Goods + Country)
>summary(next.lm, cor=F)
Call: lm(formula = log(spend) ~ Goods + Country)
Residuals:
\begin{tabular}{rrrrr} 
Min & 1Q & Median & 3Q & Max \\
-1.01 & -0.1807 & 0.04115 & 0.1978 & 0.5048
\end{tabular}
```

Coefficients:

	Value	Std. Error	t value $\operatorname{Pr}(>\|\mathrm{t}\|)$	
(Intercept)	4.5267	0.1980	22.8625	0.0000
Goods2	1.6415	0.2524	6.5039	0.0000
Goods3	1.1059	0.2524	4.3817	0.0001
Goods4	0.9354	0.2524	3.7062	0.0007
Goods5	0.4298	0.2524	1.7029	0.0972
Goods6	1.6210	0.2524	6.4226	0.0000
Goods7	-0.0831	0.2524	-0.3294	0.7438
Goods8	-0.1176	0.2524	-0.4658	0.6442
Goods9	-1.8364	0.2524	-7.2759	0.0000
Goods10	1.3465	0.2524	5.3349	0.0000
Goods11	1.3858	0.2524	5.4906	0.0000
Goods12	0.2226	0.2524	0.8818	0.3837
Goods13	1.5243	0.2524	6.0393	0.0000
CountryFrance	-1.6800	0.1400	-11.9998	0.0000
CountryGermany	-0.2447	0.1400	-1.7477	0.0890
CountryrestofE	-0.5033	0.1400	-3.5951	0.0010

```
Residual standard error: 0.3569 on 36 degrees of freedom
Multiple R-Squared: 0.9381
F-statistic: 36.34 on 15 and 36 degrees of freedom,
the p-value is 0
>anova(next.lm)
Analysis of Variance Table
Response: log(spend)
Terms added sequentially (first to last)
                Df Sum of Sq Mean Sq F Value Pr(F)
        Goods 12 47.85186 3.987655 31.29875 1.998400e-15
    Country 3 21.60350 7.201168 56.52133 1.071365e-13
Residuals 36 4.58662 0.127406
```

5 Data have been collected from a multi-centre randomised-controlled trial on 1000 early-stage breast cancer patients, who after having successful surgery to remove a lump were randomised to receive either tamoxifen (chemotherapy) alone (coded: trt $=0$) or a combination of tamoxifen and radiotherapy (coded: trt $=1$). The patients were followed up every two years for a ten-year period and the events recorded were local recurrence, distant metastasis and death. (Notification of the date of death for patients in the study, recorded to within a day, was obtained from an outside organisation.) A patient may be observed in any of the following states (or stages) during the follow-up period: free of cancer (state 1), local recurrence only (state 2), distant metastasis only (state 3), both local recurrence and distant metastasis together (state 4) and death (state 5).
(i) Below are two patients' follow-up data recorded in the form (time, in years, from surgery, state):

```
Patient
    1 (0,1) (2,1) (4,3) (4.2,5)
    2 (0,1) (2,1) (4,1) (6,1) (8,2) (10,2)
```

Construct the likelihood contributions of these two patients, defining any terms that you use.
(ii) Below is the edited R output from a multi-state model analysis of the data from the study. (The follow-up times are measured in years.)

```
>breastcancer.msm
Multi-state Markov models in continuous time
Maximum likelihood estimates:
* Matrix of transition intensities with covariates set
    to their means
\begin{tabular}{lccccc} 
& Stage 1 & Stage 2 & Stage 3 & Stage 4 & Stage 5 \\
Stage 1 & -.085 & 0.025 & 0.056 & 0 & 0.004 \\
Stage 2 & 0 & -0.181 & 0 & 0.164 & 0.017 \\
Stage 3 & 0 & 0 & -0.369 & 0.064 & 0.305 \\
Stage 4 & 0 & 0 & 0 & -0.513 & 0.513 \\
Stage 5 & 0 & 0 & 0 & 0 & 0
\end{tabular}
```

corresponding standard errors

	Stage 1	Stage 2	Stage 3	Stage 4	Stage 5
Stage 1	.0036	0.0021	0.0034	0	0.0018
Stage 2	0	0.0211	0	0.0251	0.0174
Stage 3	0	0	0.0246	0.0131	0.0236
Stage 4	0	0	0	0.0678	0.0678
Stage 5	0	0	0	0	0

*No covariates on transition intensities
-2* log-likelihood: 10845.84
> pmatrix.msm(breastcancer.msm, t=5)

	Stage 1	Stage 2	Stage 3	Stage 4	Stage 5
Stage 1	0.65	0.06	0.10	0.02	0.16
Stage 2	0	0.40	0	0.16	0.43
Stage 3	0	0	0.16	0.04	0.80
Stage 4	0	0	0	0.08	0.92
Stage 5	0	0	0	0	1

a) Draw the transition diagram for this model, including on it the transition intensity corresponding to each type of transition.
b) Show how to calculate the mean sojourn time (in years), and the corresponding 95% confidence intervals.
c) Interpret the first row of the 5-year transition probability matrix provided above. Why are the first 4 elements in the last row of this matrix all zeroes?

