PAPER 36

APPLIED STATISTICS

Attempt FOUR questions

There are five questions in total
The questions carry equal weight

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1 (i) Define Ω as the linear model

$$
\Omega: Y=\mu 1+X \beta+\epsilon
$$

where Y is an n-dimensional observation vector, 1 is the n-dimensional unit vector, μ and β are unknown parameters, X is a given $n \times p$ matrix of rank p, with $X^{T} 1=\mathbf{0}$, and the components of ϵ are $\epsilon_{1} \ldots, \epsilon_{n}$, distributed as $\operatorname{NID}\left(0, \sigma^{2}\right)$, with σ^{2} unknown. Define further

$$
X \beta=X_{1} \beta_{1}+X_{2} \beta_{2},
$$

where X is partitioned as $\left(X_{1}: X_{2}\right)$, and β is similarly partitioned as $\beta=\binom{\beta_{1}}{\beta_{2}}$.
How would you test the hypothesis $\omega: \beta=0$ against Ω ? How would you test the hypothesis $\omega_{1}: \beta_{1}=0$ against Ω ? What does it mean to say that β_{1}, β_{2} are orthogonal? (Standard theorems need not be proved but should be carefully quoted.)
(ii) Discuss carefully the S-Plus5 output for the data given below. How might you extend the analysis given?

From The Independent,
November 21, 2001, with the headline
'Supermarkets to defy bar on cheap designer goods'.

How prices compare: prices given in UK pounds.

Item	UK	Sweden	France	Germany	US
Levi 501 jeans	46.16	47.63	42.11	46.06	27.10
Dockers K1 khakis	58.00	54.08	47.22	46.20	32.22
Timberland women's boots	111.00	104.12	89.43	93.36	75.42
DieselKultar men's jeans	60.00	43.35	43.50	44.48	NA
Timberland cargo pants	53.33	48.58	43.54	58.66	31.70
Gap men's sweater	34.50	NA	26.93	27.26	28.76
Ralph Lauren polo shirt	49.99	42.04	36.41	40.26	32.48
H\&M cardigan	19.99	17.31	18.17	15.28	NA

```
> p _ scan("pdata"); it _ 1:8; cou _ scan(,"")
```

UK Swe Fra Germ US
>x _ expand.grid(cou,it) ; country _ x[,1] ; item _ x[,2]
>item _ factor(item)
> first.lm _ lm(p~ country + item, na.action=na.omit)
> anova(first.lm)
Analysis of Variance Table
Response: p
Terms added sequentially (first to last)
Df Sum of Sq Mean Sq F Value $\operatorname{Pr}(F)$
country $4 \quad 1115.56 \quad 278.890 \quad 10.57291 \quad 3.732294 \mathrm{e}-05$
item $716910.202415 .74391 .582590 .000000 \mathrm{e}+00$
Residuals $25 \quad 659.44 \quad 26.378$
> next.lm _ lm(p^{\sim} item + country, na.action=na.omit)
$>$ anova(next.lm)
Analysis of Variance Table
Response: p
Terms added sequentially (first to last)
Df Sum of Sq Mean Sq F Value $\operatorname{Pr}(F)$
item $716409.02 \quad 2344.14688 .86829 \quad 0.000000 \mathrm{e}+00$
country $4 \quad 1616.74 \quad 404.18415 .32293 \quad 1.859221 \mathrm{e}-06$
Residuals $25 \quad 659.44 \quad 26.378$

2 (i) Let Y_{1}, \ldots, Y_{n} be independent binary random variables with

$$
P\left(Y_{i}=1\right)=p_{i}=1-P\left(Y_{i}=0\right), \quad 1 \leqslant i \leqslant n
$$

where p_{1}, \ldots, p_{n} are unknown probabilities. Describe briefly how to fit the model

$$
\omega: \log \frac{p_{i}}{1-p_{i}}=\beta^{T} x_{i} \quad, \quad 1 \leqslant i \leqslant n
$$

where x_{1}, \ldots, x_{n} are given vectors, each of dimension p, and β is an unknown vector.
What is the maximised log-likelihood under the hypothesis $\Omega: 0 \leqslant p_{i} \leqslant 1$, $1 \leqslant i \leqslant n$? Why is the usual deviance not appropriate as a measure of the fit of ω ?
(ii) Rousseauw et al, 1983, collected data on males in a heart-disease high-risk region of the Western Cape, South Africa. Our object is to predict chd $=1$ or 0 , i.e., coronary heart disease present or absent, from a set of covariates listed below

```
sbp systolic blood pressure
tobacco cumulative tobacco (kg)
ldl low density lipoprotein cholesterol
adiposity
famhist family history of heart disease (Present, Absent)
typea type-A behaviour
obesity
alcohol current alcohol consumption
age age at onset
```

Interpret the corresponding S-Plus5 output, which makes use of the function
stepAIC
from library (MASS).

```
> SAheart.data[1:3,]
    sbp tobacco ldl adiposity famhist typea obesity alcohol age chd
    1 160 12.00 5.73 23.11 Present 49 25.30 97.20 52 1
    2 144 0.01 4.41 28.61 Absent 55 28.87 2.06 63 1
    3 118 0.08 3.48 32.28 Present 52 29.14 
```

>table(famhist, chd)
01
Absent 20664
Present 9696

```
> first.glm _ glm(chd ~ sbp+tobacco+ldl+adiposity+famhist+typea+obesity+
+ alcohol + age, family = binomial)
> summary(first.glm,cor=F)
```

Coefficients:

	Value	Std. Error	t value
(Intercept)	-6.1506610935	1.306629106	-4.70727390
sbp	0.0065040116	0.005727607	1.13555485
tobacco	0.0793762052	0.026590779	2.98510268
ldl	0.1739231824	0.059627387	2.91683387
adiposity	0.0185864751	0.029270110	0.63499847
famhist	0.9253661529	0.227736242	4.06332406
typea	0.0395947051	0.012308368	3.21689313
obesity	-0.0629099612	0.044222058	-1.42259236
alcohol	0.0001216154	0.004481130	0.02713944
age	0.0452248070	0.012115699	3.73274426

(Dispersion Parameter for Binomial family taken to be 1)
Null Deviance: 596.1084 on 461 degrees of freedom
Residual Deviance: 472.14 on 452 degrees of freedom
Number of Fisher Scoring Iterations: 4

```
> stepAIC(first.glm)
Start: AIC= 492.14
chd ~ sbp +tobacco +ldl +adiposity +famhist +typea +obesity +alcohol+
age
    Df Deviance AIC
    - alcohol 1 472.1408490.1408
- adiposity 1 472.5450 490.5450
    - sbp 1 473.4371491.4371
    <none> NA 472.1400 492.1400
    - obesity 1474.2332 492.2332
        - ldl 1481.0701499.0701
    - tobacco 1481.6744499.6744
    - typea 1 483.0466 501.0466
    - age 1 486.5284 504.5284
- famhist 1 488.8851 506.8851
Step: AIC= 490.14
chd ~ sbp +tobacco +ldl +adiposity +famhist +typea +obesity +age
        Df Deviance AIC
- adiposity 1472.5490 488.5490
    - sbp 1473.4651489.4651
    <none> NA 472.1408 490.1408
    - obesity 1474.2404 490.2404
        - ldl 1 481.1541497.1541
    - tobacco 1482.0563 498.0563
    - typea 1 483.0604 499.0604
    - age 1486.6412 502.6412
    - famhist 1 488.9925 504.9925
Step: AIC= 488.55
    chd ~ sbp + tobacco + ldl + famhist + typea + obesity + age
```

```
    UNIVERSITY OF
Df Deviance AIC
- sbp 1473.9799487 .9799
<none> NA 472.5490488 .5490
- obesity 1474.6548488 .6548
- tobacco 1482.5353496 .5353
- ldl 1482.9470496 .9470
- typea 1483.1925497 .1925
- famhist 1489.3779503 .3779
- age 1495.4754509 .4754
```

```
Step: AIC= 487.98
```

Step: AIC= 487.98
chd ~ tobacco + ldl + famhist + typea + obesity + age
chd ~ tobacco + ldl + famhist + typea + obesity + age
Df Deviance AIC

- obesity 1475.6856487.6856
<none> NA 473.9799487.9799
- tobacco 1484.1760496.1760
 - typea 1 484.2967 496.2967
 - ldl 1484.5327 496.5327
- famhist 1 490.5818 502.5818
 - age 1 502.1120 514.1120
Step: AIC= 487.69
chd ~ tobacco + ldl + famhist + typea + age
Df Deviance AIC
<none> NA 475.6856 487.6856
 - ldl 1484.7143494.7143
 - typea 1 485.4439495.4439
- tobacco 1 486.0322496.0322
- famhist 1 492.0948 502.0948
- age 1 502.3788 512.3788

```
```

UNIVERSITY OF
Call:
glm(formula = chd ~}\mathrm{ tobacco +ldl +famhist +typea +age,binomial)
Coefficients:
(Intercept) tobacco ldl famhist typea age
-6.446392 0.08037506 0.1619908 0.9081708 0.0371149 0.05045984
Degrees of Freedom: 462 Total; 456 Residual
Residual Deviance: 475.6856
>summary(glm(chd ~tobacco+ldl+famhist+typea+age,binomial),cor=F)
Coefficients:

	Value Std. Error	t value	
(Intercept)	-6.44639157	0.91929370	-7.012331
tobacco	0.08037506	0.02586750	3.107183
ldl	0.16199083	0.05493652	2.948691
famhist	0.90817082	0.22560312	4.025524
typea	0.03711490	0.01215529	3.053395
age	0.05045984	0.01019143	4.951201

(Dispersion Parameter for Binomial family taken to be 1)
Null Deviance: 596.1084 on 461 degrees of freedom
Residual Deviance: 475.6856 on 456 degrees of freedom
Number of Fisher Scoring Iterations: 4

```

3 The table below shows the number of road accidents at eight different locations, over a number of years, before and after installation of some traffic control measures. The question of interest is whether there has been a significant change in the rate of accidents. Let
\(y_{i j}=\) number of accidents in location \(i\) under 'treatment' \(j\)
with \(j=1\) corresponding to 'before', and \(j=2\) to 'after'
installation of traffic control.
Let \(p_{i j}\) be the corresponding period of observation, so that for example \(p_{11}=9\) years, during which a total of \(y_{11}=13\) accidents were observed. (The total of 'Before' accidents was 114 over 68 years (rate \(1.676 /\) year), and the total of 'after' accidents was 15 over 18 years (rate \(0.833 /\) year).)
(i) Write down the equations to find the maximum likelihood estimates of the unknown parameters in the model in which \(y_{i j}\) are assumed independent Poisson variables with
\[
\begin{aligned}
\mathbb{E}\left(y_{i j}\right) & =p_{i j} \mu_{i j}, \text { and } \\
\log \mu_{i j} & =\mu+\alpha_{i}+\beta_{j}, \quad 1 \leqslant i \leqslant 8,1 \leqslant j \leqslant 2,
\end{aligned}
\]
and \(\alpha_{1}=\beta_{1}=0\).
Indicate briefly how \(\operatorname{glm}()\) solves the corresponding equations, and interpret the attached S-Plus output.
(ii) Let \(e_{i j}\) be the corresponding 'fitted values' in this model. Show that
\[
\begin{aligned}
& \sum_{j} e_{i j}=\sum_{j} y_{i j} \text { for each } i, \text { and } \\
& \sum_{i} e_{i j}=\sum_{i} y_{i j} \text { for each } j .
\end{aligned}
\]
\begin{tabular}{ccccc} 
& \multicolumn{2}{c}{ Before } & \multicolumn{2}{c}{ After } \\
Location & Years & Accidents & Years & Accidents \\
& & & & \\
\hline 1 & 9 & 13 & 2 & 0 \\
2 & 9 & 6 & 2 & 2 \\
3 & 8 & 30 & 3 & 4 \\
4 & 8 & 20 & 2 & 0 \\
5 & 9 & 10 & 2 & 0 \\
6 & 8 & 15 & 2 & 6 \\
7 & 9 & 7 & 2 & 1 \\
8 & 8 & 13 & 3 & 2
\end{tabular}
```

UNIVERSITY OF
>summary(glm(acc ~ treat + site,poisson,offset=log(year)),cor=F)
Call:glm(formula =acc^treat+site,family=poisson,offset=log(year))
Deviance Residuals:

Min	1Q	Median	3Q	Max
-2.027386	-0.591431	-0.02094977	0.3122669	2.141791

Coefficients:

| | Value | Std. Error | t value |
| ---: | ---: | ---: | ---: | ---: |
| (Intercept) | 0.2707792 | 0.2784869 | 0.9723229 |
| treat | -0.7806616 | 0.2751810 | -2.8369024 |
| site2 | -0.4855078 | 0.4493122 | -1.0805578 |
| site3 | 1.0176088 | 0.3263931 | 3.1177397 |
| site4 | 0.5370828 | 0.3562308 | 1.5076822 |
| site5 | -0.2623643 | 0.4205764 | -0.6238207 |
| site6 | 0.5858730 | 0.3528776 | 1.6602725 |
| site7 | -0.4855078 | 0.4493133 | -1.0805552 |
| site8 | 0.1992985 | 0.3791789 | 0.5256054 |

(Dispersion Parameter for Poisson family taken to be 1)
Null Deviance: 132.9485 on 15 degrees of freedom
Residual Deviance: 16.27524 on 7 degrees of freedom
Number of Fisher Scoring Iterations: 4

```

4 A client has come to two statisticians (Dr. Mean and Dr. Variance) with data collected from a one-academic year randomised-controlled study on \(m\) students, known for their tendency to get into fights in school. The study randomised students to receive, at the beginning of the academic year, either the new Counselling and Managing Behaviour (CAMB) therapy treatment or the standard Warning treatment (which is administered at the time of a fight) in order to determine whether the new treatment procedure was effective in reducing the number of fight episodes seen during the academic year.

The client has brought the fight-episode data in the form of counts \(\mathbf{Y}_{i}=\) \(\left(Y_{i 1}, Y_{i 2}, Y_{i 3}\right), 1 \leqslant i \leqslant m\), recorded for each term in the academic year. Additional information on a student is recorded in covariate vectors \(\mathbf{x}_{i j}, 1 \leqslant i \leqslant m, 1 \leqslant j \leqslant 3\), which includes information on what treatment was received.

Both Drs. Mean and Variance realise that there will be a correlation between the components of \(\mathbf{Y}_{i}\). Dr. Mean decides to model the data as follows. He assumes that
\[
\begin{aligned}
\log E\left(Y_{i j} \mid \mathbf{x}_{i j}\right)=\beta_{0}+\beta^{T} \mathbf{x}_{i j} & =\log \mu_{i j} \\
\operatorname{Var}\left(Y_{i j} \mid \mathbf{x}_{i j}\right) & =\mu_{i j} \\
\operatorname{Corr}\left(Y_{i j}, Y_{i k} \mid \mathbf{x}_{i j}, \mathbf{x}_{i k}\right) & =\rho(j \neq k) .
\end{aligned}
\]

However, Dr. Variance decides to adopt the following alternative approach. She assumes that conditional on \(b_{i}\), the responses \(Y_{i j}\) 's on the \(i\) th student are independent Poisson random variables with
\[
\begin{aligned}
E\left(Y_{i j} \mid \mathbf{x}_{\mathbf{i}} ; b_{i}\right) & =\eta_{i j} \\
\operatorname{Var}\left(Y_{i j} \mid \mathbf{x}_{i j} ; b_{i}\right) & =\eta_{i j} \\
\operatorname{Cov}\left(Y_{i j}, Y_{i k} \mid \mathbf{x}_{\mathbf{i j}}, \mathbf{x}_{\mathbf{i k}} ; b_{i}\right) & =0,(j \neq k) \\
\log \eta_{i j} & =b_{i}+\beta_{0}+\beta^{T} \mathbf{x}_{\mathbf{i j}}
\end{aligned}
\]

She also assumes that the \(\exp \left(b_{i}\right)\) 's are independent and identically distributed \(\operatorname{Gamma}\left(\tau^{2} / \theta, \tau / \theta\right)\) (i.e. with mean \(\tau\) and variance \(\theta\) ).
(i) What are the differences between the two approaches?
(ii) How would you interpret, for the client, the intercept parameter, \(\beta_{0}\), and the treatment parameters, say \(\beta_{1}\), from the two models? How would you interpret the parameter \(\theta\) ?
(iii) Find \(\log \mathbb{E}\left(Y_{i j} \mid x_{i j}\right)\) for Dr. Variance's model and compare it with the expression given in Dr. Mean's model. If Dr. Variance's model was correct in this situation, would Dr. Mean be consistently estimating what he thinks he is estimating? Explain your answer.
(iv) If the variance and correlation structures in Dr. Mean's model were incorrectly specified, but the mean structure was correctly specified, how would Dr. Mean be able to make valid inferences about the parameters of interest?

5 (i) Suppose that \(y_{1}, \ldots, y_{n}\) are independent Poisson random variables, and \(\mathbb{E}\left(y_{i}\right)=\mu_{i}\), \(1 \leqslant i \leqslant n\). We wish to fit the model \(\omega\), defined as
\[
\omega: \log \mu_{i}=\mu+\beta^{T} x_{i}, \quad 1 \leqslant i \leqslant n,
\]
where \(\mu, \beta\) are unknown parameters and \(x_{1}, \ldots, x_{n}\) are given covariates. Show that the deviance \(D\) for testing the fit of \(\omega\) may be written as
\[
D=2 \sum y_{i} \log \left(y_{i} / e_{i}\right)
\]
where \(\left(e_{i}\right)\) are the "expected values" under \(\omega\), and show that \(D \simeq \sum\left(y_{i}-e_{i}\right)^{2} / e_{i}\).
(ii) Now suppose that \(y_{1}, \ldots y_{n}\) are independent negative binomial variables, and that \(y_{i}\) has frequency function
\[
f\left(y_{i} \mid \theta, \mu_{i}\right)=\frac{\Gamma\left(\theta+y_{i}\right)}{\Gamma(\theta) y_{i}!} \quad \frac{\mu_{i}^{y_{i}} \theta^{\theta}}{\left(\mu_{i}+\theta\right)^{\theta+y_{i}}}
\]
for \(y_{i}=0,1,2, \ldots\), thus \(\mathbb{E}\left(y_{i}\right)=\mu_{i}, \operatorname{var}\left(y_{i}\right)=\mu_{i}+\mu_{i}^{2} / \theta\).
Assume that \(\theta\) is known. Show that the deviance for testing
\[
\omega_{n}: \log \mu_{i}=\beta^{T} x_{i} \quad, \quad 1 \leqslant i \leqslant n
\]
is say \(D_{n}\), where
\[
D_{n}=2 \sum y_{i} \log \frac{y_{i}}{e_{i}}-2 \sum\left(y_{i}+\theta\right) \log \frac{\left(y_{i}+\theta\right)}{\left(e_{i}+\theta\right)}
\]
where \(\left(e_{i}\right)\) are the "expected values" under \(\omega_{n}\).```

