PAPER 43

Applied Multivariate Analysis

Attempt THREE questions.
There are five questions in total.
The questions carry equal weight.

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.
$1 \quad$ Suppose that the p-dimensional vector X is distributed as $N_{p}(\mu, V)$.
(i) Show that if we partition X into components X_{1}, X_{2}, so that $X^{T}=\left(X_{1}^{T}, X_{2}^{T}\right)$, then the covariance matrix of X_{1} conditional on $X_{2}=x_{2}$ is $V_{11}-V_{12} V_{22}^{-1} V_{21}$, where

$$
V=\left(\begin{array}{ll}
V_{11} & V_{12} \\
V_{21} & V_{22}
\end{array}\right)
$$

(ii) Hence or otherwise find an expression for the variance of ($X_{1} \mid X_{2}=x_{2}$) in terms of V^{-1}, when X_{1}, X_{2} are of dimensions $1, p-1$ respectively.
(iii) If now $p=3$, and $X^{T}=\left(X_{1}, X_{2}, X_{3}\right)$, derive an expression for the correlation of X_{1}, X_{2} conditional on $X_{3}=x_{3}$, in terms of $\left(\rho_{i j}\right)$, where $\rho_{i j}=\operatorname{corr}\left(X_{i}, X_{j}\right)$ for $1 \leq i<j \leq 3$.

2 (i) Let x_{1}, \ldots, x_{n} be a random sample from the distribution $N_{p}(\mu, V)$. Find an expression for the loglikelihood function $\ell(\mu, V)$ in terms of the standard statistics \bar{x}, S, and state without proof the form of the maximum likelihood estimators $\hat{\mu}, \hat{V}$.
(ii) Now suppose that we have independent observations from g distinct groups, with

$$
x_{1}^{(\nu)}, \ldots, x_{n_{\nu}}^{(\nu)}
$$

being the sample from the ν th group, which is assumed to be a random sample from $N\left(\mu^{(\nu)}, V\right)$, for $1 \leq \nu \leq g$. Using the results of (i) above, show that the generalized likelihood ratio test of

$$
H_{0}: \mu^{(1)}=\ldots=\mu^{(g)}=\mu \text { say }
$$

with μ, V both unknown, is of the form:
reject H_{0} if

$$
\log \frac{|W+B|}{|W|}>\text { constant }
$$

where W, B are matrices that you should define.
(iii) Describe briefly the use of the matrices W, B in discriminant analysis.

3 Interpret the commands and the corresponding output, giving appropriate sketch graphs. (Formal proofs are not required.)

	meat	coffee	beer	UKres	Cantab		sports	driver	Left.h
Taeko	1	1	0	1	1	1	0	0	0
Luitgard	0	1	0	0	1	1	1	1	0
Alet	1	1	1	0	0	1	0	1	0
Tom	1	1	1	1	1	0	1	1	0
LinYee	1	1	0	0	0	0	1	1	0
Pio	1	1	0	0	0	0	1	0	0
LingChen	1	0	0	0	0	1	1	0	0
HuiChin	1	1	0	0	0	1	1	1	0
Martin	1	1	1	1	0	0	1	1	0
Nicolas	1	1	1	0	0	0	1	1	1
Mohammad	1	1	0	0	0	0	0	1	0
Meg	1	1	0	0	0	1	1	0	0

> d _ dist(a, metric="binary") ; round(dist2full(d),2)
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12]

[2,] 0.570 .000 .570 .500 .500 .670 .670 .330 .620 .620 .670 .50
$\left[\begin{array}{lllllllllllll}{[3,]} & 0.57 & 0.57 & 0.00 & 0.50 & 0.50 & 0.67 & 0.67 & 0.33 & 0.43 & 0.43 & 0.40 & 0.50\end{array}\right.$

[5,] $0.710 .500 .500 .430 .000 .250 .60 \quad 0.20 \quad 0.3300 .330 .25 \quad 0.40$
[6,] $0.670 .670 .670 .570 .250 .000 .500 .400 .50 ~ 0.50 ~ 0.50 ~ 0.25$
[7,] $0.670 .670 .670 .750 .600 .500 .000 .40 \quad 0.71 \begin{array}{llllllllll}0.71 & 0.80 & 0.25\end{array}$
[8,] $0.570 .330 .330 .500 .200 .400 .400 .000 .430 .430 .40 \quad 0.20$
$\left[\begin{array}{lllllllllllll}{[9,]} & 0.62 & 0.62 & 0.43 & 0.14 & 0.33 & 0.50 & 0.71 & 0.43 & 0.00 & 0.29 & 0.50 & 0.57\end{array}\right.$
$[10] \quad 0.780 .620 .430 .38 \quad$,
[11,] 0.670 .670 .400 .570 .250 .500 .800 .400 .50

> h _ hclust(d, method="compact")

4 Write brief essays, which should include appropriate sketch graphs, on two of the following three S-Plus functions,

```
princomp()
tree()
cmdscale()
```

The second function may be replaced by
rpart()
if you prefer.

5 Suppose we have two known classes, C_{1} and C_{2}, and our observation x is known to have arisen from one of C_{1} or C_{2}, with prior probabilities π_{1}, π_{2} respectively. The corresponding known probability densities are those of $N\left(\mu_{1}, V\right), N\left(\mu_{2}, V\right)$ respectively.
(i) Show that the Bayes rule for assigning x to C_{1} or C_{2} is of the form:
$\operatorname{assign} x$ to C_{1} if $a^{T} x>b$
where you should determine a, b.
(ii) In the case $\pi_{1}=\pi_{2}=1 / 2$, show that the above rule has error probabilities

$$
P\left(\operatorname{assign} x \text { to } C_{1} \mid x \text { is from } C_{2}\right)=P\left(\operatorname{assign} x \text { to } C_{2} \mid x \text { is from } C_{1}\right)=p
$$

say, where $p=p(\delta), \delta>0$ and

$$
\delta^{2}=\left(\mu_{1}-\mu_{2}\right)^{T} V^{-1}\left(\mu_{1}-\mu_{2}\right) .
$$

