

MATHEMATICAL TRIPOS Part III

Friday 6 June 2003 9 to 11

PAPER 22

ANALYTIC NUMBER THEORY

Attempt **TWO** questions. There are **five** questions in total. The questions carry equal weight.

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

2

1 Prove by the method of Tchebychev that $\pi(x) = O(x/\log x)$. Hence establish Mertens result that

$$\sum_{p \le x} \frac{\log p}{p} = \log x + O(1) \,.$$

Deduce by the partial summation formula, or otherwise, that, for $\lambda > 1$,

$$\sum_{p \le x} \frac{(\log p)^{\lambda}}{p} = \frac{1}{\lambda} (\log x)^{\lambda} + O((\log x)^{\lambda-1}).$$

2 Prove that $\zeta(s) \neq 0$ on the line $\sigma = 1$.

Write down a relation between

$$\int_0^x \psi(u) du$$

and $\zeta'(s)/\zeta(s)$, where ψ is the Tchebychev function. Describe briefly how it enables one to verify that the integral is asymptotic to $\frac{1}{2}x^2$ as $x \to \infty$.

What does this imply about the asymptotic value of the *n*th prime p_n as $n \to \infty$?

3 State and prove the functional equation for $\zeta(s)$.

p

State also the Riemann-von-Mangoldt formula. Deduce from the latter that if $\gamma_1, \gamma_2, \ldots$ is the increasing sequence of positive ordinates of the zeros of $\zeta(s)$ then $\gamma_n \sim 2\pi n/\log n$ as $n \to \infty$.

4 Describe the main ideas of the Selberg upper-bound sieve. Show how it leads to the result that, for any $\varepsilon > 0$, there exists $x_0 = x_0(\varepsilon)$ such that, for all a > 0 and all $x > x_0$,

$$\pi(x+a) - \pi(a) < (2+\varepsilon)x/\log x.$$

5 Prove Dirichlet's theorem on primes in arithmetical progressions assuming that $L(1,\chi) \neq 0$ for a real, non-principal character χ .

Let $\pi(x, q, a)$ denote the number of primes $p \leq x$ in the arithmetical progression $a, a + q, a + 2q, \ldots$ with (a, q) = 1. Show that, for s > 1,

$$\sum_{\equiv a \pmod{q}} \frac{1}{p^s} = s \int_1^\infty \frac{\pi(x, q, a)}{x^{s+1}} dx \,.$$

Paper 22