PAPER 22

ANALYTIC NUMBER THEORY

Attempt TWO questions.

There are five questions in total.
The questions carry equal weight.

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1 Prove by the method of Tchebychev that $\pi(x)=O(x / \log x)$. Hence establish Mertens result that

$$
\sum_{p \leq x} \frac{\log p}{p}=\log x+O(1)
$$

Deduce by the partial summation formula, or otherwise, that, for $\lambda>1$,

$$
\sum_{p \leq x} \frac{(\log p)^{\lambda}}{p}=\frac{1}{\lambda}(\log x)^{\lambda}+O\left((\log x)^{\lambda-1}\right)
$$

2 Prove that $\zeta(s) \neq 0$ on the line $\sigma=1$.
Write down a relation between

$$
\int_{0}^{x} \psi(u) d u
$$

and $\zeta^{\prime}(s) / \zeta(s)$, where ψ is the Tchebychev function. Describe briefly how it enables one to verify that the integral is asymptotic to $\frac{1}{2} x^{2}$ as $x \rightarrow \infty$.

What does this imply about the asymptotic value of the nth prime p_{n} as $n \rightarrow \infty$?
$3 \quad$ State and prove the functional equation for $\zeta(s)$.
State also the Riemann-von-Mangoldt formula. Deduce from the latter that if $\gamma_{1}, \gamma_{2}, \ldots$ is the increasing sequence of positive ordinates of the zeros of $\zeta(s)$ then $\gamma_{n} \sim 2 \pi n / \log n$ as $n \rightarrow \infty$.

4 Describe the main ideas of the Selberg upper-bound sieve. Show how it leads to the result that, for any $\varepsilon>0$, there exists $x_{0}=x_{0}(\varepsilon)$ such that, for all $a>0$ and all $x>x_{0}$,

$$
\pi(x+a)-\pi(a)<(2+\varepsilon) x / \log x .
$$

5 Prove Dirichlet's theorem on primes in arithmetical progressions assuming that $L(1, \chi) \neq 0$ for a real, non-principal character χ.

Let $\pi(x, q, a)$ denote the number of primes $p \leq x$ in the arithmetical progression $a, a+q, a+2 q, \ldots$ with $(a, q)=1$. Show that, for $s>1$,

$$
\sum_{p \equiv a(\bmod q)} \frac{1}{p^{s}}=s \int_{1}^{\infty} \frac{\pi(x, q, a)}{x^{s+1}} d x .
$$

