PAPER 25

ANALYTIC NUMBER THEORY

Attempt TWO questions
There are five questions in total
The questions carry equal weight

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1 Illustrate the methods of Tchebychev and Mertens by proving that

$$
\sum_{p \leqslant x} \frac{\log p}{p}=\log x+O(1)
$$

Deduce by partial summation, or otherwise, that

$$
\sum_{p \leqslant x} \frac{\sqrt{\log p}}{p}=2 \sqrt{\log x}+O(1)
$$

2 Either:
Prove that $\zeta(s) \neq 0$ on the line $\sigma=1$.
Write down a relation between

$$
\int_{0}^{x} \psi(u) d u
$$

and $\zeta^{\prime}(s) / \zeta(s)$, where ψ is the Tchebychev function. Describe how it leads to a proof of the prime-number theorem.

Or:
State and prove the functional equation for $\zeta(s)$.
State also the Riemann-von Mangoldt formula. Deduce from the latter that if $\gamma_{1}, \gamma_{2}, \ldots$ is the increasing sequence of positive ordinates of the zeros of $\zeta(s)$ then there are $\ll \log T$ elements with $T<\gamma_{n} \leqslant T+1$. Hence verify that there exists $c>0$ such that

$$
\gamma_{n+1}-\gamma_{n}>c / \log n
$$

for an infinite sequence of values of n.

3 Show how the explicit formula for $\zeta^{\prime}(s) / \zeta(s)$ can be used to establish a zero-free region for $\zeta(s)$ of the form $\sigma>1-c / \log |t|$ for some $c>0$.

Show further how the formula leads to the estimate

$$
\sum_{\rho} \frac{1}{4+(t-\gamma)^{2}} \ll \log |t|
$$

where the sum is over all non-trivial zeros $\rho=\beta+i \gamma$ of $\zeta(s)$. Deduce that the number of zeros ρ with $|t-\gamma|<1$ is $\ll \log |t|$.

4 Describe the main ideas of the Selberg upper-bound sieve. Show how it leads to the result that if p runs through all the primes such that $p, p+2$ are twin primes then $\sum 1 / p$ converges.

5 Prove Dirichlet's theorem on primes in arithmetical progressions assuming that $L(1, \chi) \neq 0$ for a real, non-principal character χ.

It is known, from the Siegel-Walfisz theorem, that the number $\pi(x, q, a)$ of primes $p \leqslant x$ in the arithmetical progression $a, a+q, a+2 q, \ldots$ with $(a, q)=1$ satisfies $\pi(x, q, a) \sim(1 / \phi(q))$ li x as $x \rightarrow \infty$. Deduce that

$$
\sum_{\substack{p \leqslant x \\ D \equiv a(\bmod q)}} \frac{1}{p} \sim \frac{1}{\phi(q)} \log \log x \quad \text { as } x \rightarrow \infty
$$

