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1

(a) Show that the universal cover of any closed 3-manifold with finite fundamental
group has the same integral homology groups as the 3-sphere.

(b) Show that the closed oriented surface of any genus g > 1 has a connected covering
space of degree n, for any n > 1. Compute the genus of any such covering space.

2

(a) Let n > 2. Let f : RPn → RPn be a continuous map which is not surjective.
Show that f induces the zero map on homology groups in positive degrees. [You
may assume the usual formal properties of the degree in Z/2 of a map between
arbitrary closed manifolds, analogous to the degree in Z of a map between oriented
closed manifolds.] Deduce that f lifts to a map RPn → Sn. Finally, show that f
is homotopic to a constant map.

(b) Show that for any map f : X → Y of nonzero degree between closed oriented
n-manifolds, f induces surjections on rational homology.

3

(a) Let X be any odd-dimensional closed manifold. Show that X has Euler character-
istic zero.

(b) Let V be a finite-dimensional vector space V with a nondegenerate alternating
(〈x, x〉 = 0 for all x ∈ V ) bilinear form. Show that V has even dimension.

(c) Let X be a closed orientable manifold of dimension congruent to 2 modulo 4. Using
(b), show that X has even Euler characteristic. Give an example to show that this can
fail if we omit the assumption that X is orientable.
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4 Let p be a prime number. Define a “Bockstein homomorphism” β : Hi(X,Z/p) →
Hi+1(X,Z/p), meaning a homomorphism which fits into a long exact sequence

· · · → Hi(X,Z/p) → Hi(X,Z/(p2)) → Hi(X,Z/p)
β→ Hi+1(X,Z/p) → · · · .

Here Hi(X,Z/(p2)) → Hi(X,Z/p) should be the obvious map associated to the group
homomorphism Z/(p2) → Z/p which takes 1 to 1.

Show that the Bockstein is always zero on H0(X,Z/p), but that for every prime
number p and every i > 1 there is a space X such that β is nonzero on Hi(X,Z/p). For
any space X, show that

β(xy) = (βx)y + (−1)ix(βy)

for all x ∈ Hi(X,Z/p) and y ∈ Hj(X,Z/p).

5 Let X and Y be topological spaces, R a commutative ring. Let f : X → Y be a
covering space of degree n < ∞. Define a pullback map on homology, f∗ : Hi(Y, R) →
Hi(X, R). Your map should have the property that f∗f

∗(u) = nu for all u ∈ H∗(Y, R).
Deduce that for any covering space f : X → Y of finite degree, f∗ : H∗(X,Q) → H∗(Y,Q)
is surjective.

Thus the Betti numbers increase when we pass from a space to a finite covering
space. Give examples of double covering spaces X → Y to show that the Betti numbers
of X can either be equal to those of Y , or strictly larger (in some dimension) than those
of Y .

6

(a) Let C1, . . . , Cn be simple closed curves on a closed orientable surface X of genus
g. Suppose that any two of the curves are disjoint, and that the curves are linearly
independent in the rational homology of X. Show that n 6 g.

(b) Define the degree of a smooth complex curve C (a closed complex submanifold of
complex dimension 1) in CP2 to be the integer d such that C is homologous to d
times a line CP1 in CP2. Show that the complex curve {[x, y, z] ∈ CP2 : xd +yd =
zd} has degree d.

[Hint: intersect it with a line.]
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