PAPER 74

ALGEBRAIC NUMBER THEORY

Attempt FIVE questions, including at least ONE from each section.
All questions carry equal weight.

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

Section A

1 Give the definition of a Dedekind domain. Let \mathfrak{o} be a Dedekind domain with field of fractions k. Let \mathfrak{a} be a non-zero fractional ideal in k and define $\mathfrak{a}^{-1}=\{x \in k \mid x \mathfrak{a} \subset \mathfrak{o}\}$. Show that \mathfrak{a}^{-1} is a fractional ideal and that $\mathfrak{a} \mathfrak{a}^{-1}=\mathfrak{o}$.

2
(i) State and prove the Chinese remainder theorem for \mathfrak{o} a Dedekind domain.
(ii) Let K / k be a normal extension of algebraic number fields. Let \mathfrak{p} be a prime of k, whose factorisation in K is conorm ${ }_{K / k} \mathfrak{p}=\mathfrak{P}_{1}^{e_{1}} \ldots \mathfrak{P}_{g}^{e_{g}}$. Show that $\operatorname{Gal}(K / k)$ acts transitively on the \mathfrak{P}_{i}.

3 Let K / k be a finite extension of algebraic number fields. Define the relative ideal norm and prove that it is multiplicative. Let \mathfrak{p} be a prime of k, whose factorisation in K is conorm ${ }_{K / k} \mathfrak{p}=\mathfrak{P}_{1}^{e_{1}} \ldots \mathfrak{P}_{g}^{e_{g}}$. Show that $[K: k]=\sum e_{i} f_{i}$ where f_{i} is the degree of $\mathfrak{O} / \mathfrak{P}_{i}$ over $\mathfrak{o} / \mathfrak{p}$.
[Properties of the norm for elements may be assumed.]

Section B

4 Let K / k be an extension of algebraic number fields. Let \mathfrak{p} be a prime of k and \mathfrak{P} a prime of K above \mathfrak{p}.
(i) Let $f(X)$ be a monic polynomial in $\mathfrak{o}_{\mathfrak{p}}[X]$ and suppose that the reduction $\bmod \mathfrak{p}$ factors as $\tilde{f}(X)=\phi_{1}(X) \phi_{2}(X)$ where ϕ_{1}, ϕ_{2} in $(\mathfrak{o} / \mathfrak{p})[X]$ are coprime. Show that $f(X)=f_{1}(X) f_{2}(X)$ with $\tilde{f}_{\nu}(X)=\phi_{\nu}(X)$.
(ii) Suppose $\mathfrak{P}^{e} \| \mathfrak{p}$ and $\mathfrak{p} \mid e$. Show that if $\alpha \in \mathfrak{O}_{\mathfrak{P}}$ then $\operatorname{Tr}_{K_{\mathfrak{F}} / k_{\mathfrak{p}}}(\alpha) \in \mathfrak{p}_{\mathfrak{p}}$.

5 Let K / k be an extension of algebraic number fields. Define the relative different $\mathfrak{d}_{K / k}$. In the case $k=\mathbf{Q}$ describe the relationship with the discriminant d_{K}.
(i) For $K \supset L \supset k$ show that $\mathfrak{d}_{K / k}=\mathfrak{d}_{K / L} \mathfrak{d}_{L / k}$.
(ii) State a relationship between the different and ramification. Hence show that if K_{1}, K_{2} are Galois over \mathbf{Q} with coprime discriminants, then $\left[K_{1} K_{2}: \mathbf{Q}\right]=\left[K_{1}: \mathbf{Q}\right]\left[K_{2}: \mathbf{Q}\right]$.

Section C

6
Write an essay on the Hilbert class field. Illustrate by computing the Hilbert class field for either $\mathbf{Q}(\sqrt{-23})$ or $\mathbf{Q}(\sqrt{-30})$, explaining all necessary working.
[The cubic $X^{3}+a X+b$ has discriminant $-4 a^{3}-27 b^{2}$.]

7 Let $m=m_{1} m_{2}^{2}$ with m_{1}, m_{2} coprime square-free positive integers. Suppose $m_{1} \not \equiv \pm m_{2} \quad(\bmod 9)$. Show that $\mathbf{Q}(\sqrt[3]{m})$ has discriminant $-27 m_{1}^{2} m_{2}^{2}$. Find a unit in $\mathbf{Q}(\sqrt[3]{6})$ and show that this field has class number $h=1$.

8 Let K / k be a quadratic extension of algebraic number fields with K totally complex and k totally real.
(i) Show that $\left[\mathfrak{O}_{K}^{*}: \mathfrak{o}_{k}^{*} \mu_{K}\right]=1$ or 2 , where $\mathfrak{D}_{K}^{*}, \mathfrak{o}_{k}^{*}$ are the unit groups in K, k, and μ_{K} is the group of roots of unity in K.
(ii) Show that the class number of k divides the class number of K.
[You may assume any properties of the Hilbert class field you require.]

