PAPER 11

ALGEBRAIC METHODS IN COMBINATORICS

Attempt TWO questions
There are three questions in total
The questions carry equal weight

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1 (i) Prove that, for any positive integer k, there exists a $(v, k, 1)$-design for infinitely many values of v. (You may assume that the multiplicative group of a finite field is cyclic.)
(ii) Show that if the edge-set of the complete graph K_{n} can be partitioned into edgedisjoint copies of the complete bipartite graph $K_{k, k}$ then k^{2} divides $n-1$.

2 Write an essay on the connections between the eigenvalues and the expansion property of a graph, the topic including also an explicit construction of a family of expanders.

3 State the Combinatorial Nullstellensatz. Deduce the following results.
(i) For any integer $k \geq 3$ there is a constant c_{k} such that any graph on n vertices without a k-regular subgraph has at most $c_{k} n \log n$ edges.
(ii) Let p be a prime and A, B be two non-empty subsets of the finite field \mathbb{F}_{p} with $|A|>|B|$. Show that the set

$$
C=\{x+y \mid x \in A, y \in B, x \neq y\}
$$

has at least $\min \{p,|A|+|B|-2\}$ elements.
[Hint: consider the polynomial $f(x, y)=(x-y) \prod_{z \in C}(x+y-z)$.]

