

MATHEMATICAL TRIPOS Part III

Tuesday 3 June 2008 1.30 to 4.30

PAPER 23

ALGEBRAIC GROUPS

All questions are of equal weight. Answer **either** Question 1 **or** Question 2 **and** any 2 others.

STATIONERY REQUIREMENTS Cover sheet

Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. 2

1

Define the *Lie algebra* of a Lie group and of a complex affine algebraic group. Compute the Lie algebras of U_n , $GL_n(\mathbb{C})$, SU_n and $SL_n(\mathbb{C})$. Explain what it means for an irreducible complex affine algebraic group to be reductive, and give some examples, with justification.

$\mathbf{2}$

Suppose that G is either a compact Lie group or a reductive complex algebraic group and that V is a finite dimensional complex representation of G.

(i) Show that V is completely reducible.

(ii) Show that, if $\mathbb{C}[V]$ is the ring of polynomial functions on V, then the ring of invariants $\mathbb{C}[V]^G$ is finitely generated.

3

Describe the symbolic method for the group $SL_2(\mathbb{C})$, and describe the representations of $SL_2(\mathbb{C})$.

$\mathbf{4}$

Define the notion of an *unstable* point in a representation V of $SL_n(\mathbb{C})$. State and prove a characterization of unstable points in terms of one-parameter subgroups of G, and describe the unstable points in the representation Symm⁶(W) of $SL_2(\mathbb{C})$, where W is the standard 2-dimensional representation.

5 Suppose that k is an algebraically closed field of characteristic p > 0. Prove that tori are linearly reductive and that $SL_2(k)$ is geometrically reductive. (Define your terms.)

END OF PAPER