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Attempt no more than FOUR questions.

There are FIVE questions in total.

The questions carry equal weight.

k is a fixed algebraically closed field.
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1 (i) Prove the theorem on the dimension of fibres, that is, if φ:X → Y is a surjective
regular map of quasi-projective algebraic varieties, then dimXy ≥ dimX − dimY for any
y ∈ Y .

(ii) Prove that any regular map φ: Pm
k → Pn

k is a constant map if m > n.

[You can use this: if X is affine and f ∈ k[X] such that ∅ 6= VX(f) 6= X, then each
component of VX(f) has dimension dimX − 1]

2 (i) Let X ⊂ A3
k be the union of the three coordinate axes and Y = V (t1t2(t1−t2)) ⊂

A2
k. Prove that X and Y are not isomorphic.

(ii) Let X = V (f) ⊂ An
k where deg f = 3. Show that if X contains two distinct

singular points x, x′, then it also contains the line joining x, x′.

3 (i) Let X be a normal quasi-projective algebraic variety of dimension d. Show that
the set of singular points of X is contained in a closed subset of dimension ≤ d− 2.

(ii) Prove that V (t21 + t22 + . . .+ t2n) ⊂ An
k is normal if n > 2.

4 (i) Let X be a quasi-projective algebraic variety which is smooth at x ∈ X. Show
that local parameters at x generate the maximal ideal mx in OX,x and show that any
f ∈ OX,x has an associated formal power series.

(ii) Let X,Y be quasi-projective algebraic varieties, x ∈ X and y ∈ Y such that the
local ringsOX,x andOY,y are isomorphic as k-algebras. Show that there are neighborhoods
x ∈ U and y ∈ V and an isomorphism φ:U → V such that φ(x) = y.

5 (i) Using the Riemann-Roch theorem, prove that there is a group structure on the
set of points of an elliptic curve.

(ii) Let X be a smooth projective curve of genus g. Prove that there is a finite
regular map φ:X → P1 of degree ≤ g + 1.

(iii) Let X be a smooth projective curve and x1, . . . , xm ∈ X distinct points. Show
that there is a rational function on X which is regular on U = X − {x1, . . . , xm} but not
regular at xi for all 1 ≤ i ≤ m.
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