

MATHEMATICAL TRIPOS Part III

Thursday 27 May, 2004 9 to 12

PAPER 15

ALGEBRAIC GEOMETRY

 $Attempt \ \mathbf{THREE} \ questions.$

There are **four** questions in total. The questions carry equal weight.

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. 2

1 Suppose that Λ is a lattice in the complex plane \mathbb{C} . Describe briefly the construction and basic properties of the Weierstrass \wp and σ functions associated to Λ . Show that if $P_1, \ldots, P_n, Q_1, \ldots, Q_n \in \mathbb{C}$, then there is a meromorphic function on \mathbb{C}/Λ whose divisor of zeros is the divisor $\sum [P_i]$ and whose divisor of poles is the divisor $\sum [Q_i]$ if and only if $\sum P_i \equiv \sum Q_i \mod \Lambda$.

2 (i) State and prove the theorem of the cube for an elliptic curve over \mathbb{C} . What modification of the statement is necessary for an elliptic curve over a number field?

(ii) Explain briefly how \wp and its derivative \wp' can be used to embed \mathbb{C}/Λ as a smooth cubic curve C in $\mathbb{P}^2_{\mathbb{C}}$. Show that points $u, v, w \in \mathbb{C}$ have collinear images in C if and only if $u + v + w \in \Lambda$. Deduce that the determinant

$$\begin{vmatrix} 1 & 1 & 1\\ \wp(u) & \wp(v) & \wp(w)\\ \wp'(u) & \wp'(v) & \wp'(w) \end{vmatrix}$$

is zero if and only if $u + v + w \in \Lambda$.

3 Explain the construction of height functions for projective varieties over number fields, and give a proof of Northcott's lemma.

4 Write an essay on normalized heights on an elliptic curve over a number field, including a description of their relevance to a proof of the Mordell-Weil theorem.