MATHEMATICAL TRIPOS Part III

Friday 8 June 2007 1.30 to 4.30

PAPER 23

ALGEBRAIC CURVES

Attempt **THREE** questions.

There are SIX questions in total.

The questions carry equal weight.

In answering any question, you may assume any result that you would have proved in answering a previous question. Throughout, k is a field.

STATIONERY REQUIREMENTS

SPECIAL REQUIREMENTS None

Cover sheet Treasury Tag Script paper

> You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1 Describe $\mathbb{P}^n_{\mathbb{Z}}$ in terms of a functor, via quotients of a free module of rank n + 1.

Use your answer to derive the Euler sequence for the tangent sheaf of \mathbb{P}^n and compute $\Omega^1_{\mathbb{P}^1}$.

2 Describe the computation of $H^i(\mathbb{P}^1_k, \mathcal{O}(n))$ in terms of a Čech complex, and deduce a duality theorem for the cohomology of locally free coherent sheaves on \mathbb{P}^1_k .

3 Prove that any locally free coherent sheaf \mathcal{E} on \mathbb{P}^1_k is of the form $\mathcal{E} \cong \mathcal{O}(a_1) \oplus \ldots \oplus \mathcal{O}(a_n)$.

4 Show that any smooth projective curve C over k has a dualizing sheaf D_C (for locally free sheaves) and that $D_C \cong \Omega^1_C$. [Any algebraic identities you need may be quoted without proof.]

5 Suppose that C is a smooth projective curve. Show that $H^i(C, \mathcal{E}) = 0 \ \forall i \ge 2$ and for all locally free sheaves \mathcal{E} on C.

Define the genus of C, and state and prove the Riemann–Roch theorem for curves.

6 Assume $k = \overline{k}$. Define the functors <u>*PicC*</u>^d. Show how to represent them. Any results you need about the semi-continuity of cohomology groups may be assumed.

END OF PAPER