PAPER 4

ADVANCED TOPICS IN COMMUTATIVE ALGEBRA

Answer $\boldsymbol{A} L \mathbf{L}$ questions. They are of equal weight.

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1 Describe the construction of Cech cohomology groups of a coherent sheaf on a projective scheme in terms of a given affine cover and compute the cohomology groups $H^{i}\left(P_{k}^{r}, O(n)\right)$, where k is a field.
[You need only sketch the key steps in the calculation.]

2
Construct an exact sequence

$$
0 \rightarrow \Omega^{1} \rightarrow O(-1)^{n+1} \rightarrow O \rightarrow 0
$$

of sheaves on projective space P^{n} and compute the determinant $\wedge^{n} \Omega^{1}$.

3 Take a conic C defined over an algebraically closed field k. Embed C in a plane L and embed L as a hyperplane in P_{k}^{3}. Find numbers a, b such that, when C is identified with P^{1}, the normal sheaf $N_{C / P^{3}}$ is $O(a) \oplus O(b)$.

4 Suppose that X is a projective scheme over a field k. Describe the Hilbert functor associated to X. Now suppose that Z is a closed subscheme of X, also defined over k. Explain what is the tangent space to the Hilbert scheme of X at the point corresponding to Z in terms of the scheme Spec $k[t] /\left(t^{2}\right)$ and then describe this tangent space in terms of the normal sheaf of Z.

You may take for granted the existence of the Hilbert scheme.]

