MATHEMATICAL TRIPOS Part III

Friday 1 June 2007 1.30 to 4.30

PAPER 33

ADVANCED PROBABILITY

Attempt **FOUR** questions. There are **SIX** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. 1 In this problem, for $n \ge 0$ we let $D_k^n = [k2^{-n}, (k+1)2^{-n}), \ 0 \le k < 2^n$ be the dyadic sub-intervals of [0, 1) with level n. We let $\mathcal{F}_n = \sigma(\{D_k^n, 0 \le k < 2^n\})$ be the sub- σ -algebra of the Borel σ -algebra $\mathcal{B}([0, 1))$ that is generated by the dyadic subintervals of [0, 1) with level n. The Lebesgue measure on $([0, 1), \mathcal{B}([0, 1)))$ is denoted by λ . The expectations below are understood with respect to the probability space $([0, 1), \mathcal{B}([0, 1)), \lambda)$.

a) Let μ be a finite non-negative measure on $([0,1), \mathcal{B}([0,1)))$. For $n \ge 1$, define

$$X_n(x) = 2^n \sum_{k=0}^{2^n - 1} \mu(D_k^n) \mathbb{1}_{D_k^n}(x), \qquad x \in [0, 1).$$

Show that $(X_n, n \ge 0)$ is a martingale in some filtered probability space to be made explicit.

b) Justify that $X_n \to X_\infty$ a.s. as $n \to \infty$, where X_∞ is integrable and for every $n \ge 0$, $X_n \ge E[X_\infty | \mathcal{F}_n]$ a.s.

c) We let $X_{\infty} \cdot \lambda$ be the measure with density X_{∞} with respect to λ , meaning that

$$X_{\infty} \cdot \lambda(A) = E[X_{\infty} \mathbb{1}_A], \qquad A \in \mathcal{B}([0,1)).$$

(i) Use b) to show that $\mu(f) \ge X_{\infty} \cdot \lambda(f)$ for every non-negative measurable function f, and conclude that $\nu = \mu - X_{\infty} \cdot \lambda$ defines a non-negative measure on $([0, 1), \mathcal{B}([0, 1)))$. If ν_n, λ_n denote the restrictions of ν and λ to \mathcal{F}_n , show that ν_n admits a density Y_n with respect to λ_n , which is given by

$$Y_n = X_n - E\left[X_{\infty}|\mathcal{F}_n\right].$$

(ii) Show that $\lim_{n\to\infty} Y_n = 0$ a.s. on the probability space $([0,1), \mathcal{B}([0,1)), \lambda)$.

(iii) On the other hand, by estimating the ν -measure of the event $\{Y_n \leq \varepsilon\}$, show that

$$\nu\left(\left\{x\in[0,1):\limsup_{n\to\infty}Y_n(x)=0\right\}\right)=0$$

2 Let $n \ge 1$ and $\theta_1, \ldots, \theta_n > 0$ be positive real numbers with sum

$$S := \sum_{i=1}^{n} \theta_i \leqslant 1.$$

On some probability space (Ω, \mathcal{F}, P) consider *n* independent random variables U_1, \ldots, U_n all uniformly distributed on [0, 1], and let \mathcal{F}_t be the σ -algebra generated by the events $\{U_i \leq s\}, 1 \leq i \leq n, 0 \leq s \leq t$. We define

$$X_t = \sum_{i=1}^n \theta_i \mathbb{1}_{\{U_i \leqslant t\}}, \qquad 0 \leqslant t \leqslant 1.$$

a) Show that the process $(M_t, 0 \leq t < 1)$ defined by

$$M_t \, := \, \frac{S - X_t}{1 - t} \,, \qquad 0 \, \leqslant \, t \, < \, 1 \,,$$

is a càdlàg martingale with respect to the filtration $(\mathcal{F}_t, 0 \leq t < 1)$.

b) Is the martingale $(M_t, 0 \leq t < 1)$ uniformly integrable?

c) By introducing suitable truncations of the stopping time

$$T := \inf \{ t \in [0,1] : 1 - S + X_t \leq t \},\$$

or otherwise, show that

$$P(1 - S + X_t > t$$
 for all $t \in [0, 1)) = 1 - S$

[Hint: observe that $M_{T-} = 1$ whenever T < 1].

3 On some probability space (Ω, \mathcal{F}, P) , let $(B_t, t \ge 0)$ be a standard real-valued Brownian motion. For a > 0 we let

$$\sigma_a = \inf \left\{ t \ge 0 : |B_t| = a \right\}.$$

a) Show that for some constant $\rho \in (0, 1)$, it holds that for every $n \ge 0$,

$$P(\sigma_1 > n) \leqslant \rho^n \,,$$

by noticing for instance that

$$\{\sigma_1 > n\} \subset \{|B_1| \leq 2, |B_2 - B_1| \leq 2, \dots, |B_n - B_{n-1}| \leq 2\}$$

Deduce that $E\left[(\sigma_1)^p\right] < \infty$ for every p > 1.

b) Show that there exists a constant C > 0 such that $E[\sigma_a] = Ca^2$ for every a > 0.

c) We define stopping times $(\sigma_a^n, n \ge 0)$ by

$$\sigma_a^0 = 0, \quad \sigma_a^1 = \sigma_a, \quad \sigma_a^{n+1} = \inf \{ t \ge \sigma_a^n : |B_t - B_{\sigma_a^n}| = a \}.$$

Show that the variables $\sigma_a^{n+1} - \sigma_a^n$ are identically distributed. By computing the variance of $\sigma_{2^{-n}}^{2^{2n}}$ or otherwise, show that

$$\lim_{n \to \infty} \sigma_{2^{-n}}^{2^{2n}} = C \qquad \text{a.s.}$$

d) Show that the laws of the random variables $B_{\sigma_{1/\sqrt{n}}^{n}}$, $n \ge 1$ converge weakly as $n \to \infty$ to a limiting law to be made explicit. Deduce the exact value of C by comparing with part c).

4 On some probability space (Ω, \mathcal{F}, P) , let $(B_t, t \ge 0)$ be a standard real-valued Brownian motion. For $t \ge 0$, we let $S_t = \sup_{0 \le s \le t} B_s$.

a) Show that $x^{-1}P(S_1 \leq x) \to c$ as $x \searrow 0$, for some constant c > 0.

b) We consider a function $f:(0,\infty)\to(0,\infty)$ which is increasing, continuous, and satisfies

$$\int_{(0,1]} f(t) \frac{dt}{t} < \infty.$$

Show that

$$\sum_{n \ge 0} P(S_{2^{-n-1}} < 2^{-n/2} f(2^{-n})) < \infty.$$

c) Deduce that, almost surely,

$$\liminf_{t\downarrow 0}\,\frac{S_t}{\sqrt{t}\,f(t)}\,\,\geqslant\,\,1\,,$$

and hence show that this limit of is in fact equal to ∞ a.s. 5 On some probability space (Ω, \mathcal{F}, P) , let $(B_t, t \ge 0)$ be a standard Brownian motion taking its values in \mathbb{R}^2 . We let λ be the Lebesgue measure on \mathbb{R}^2 . For $y \in \mathbb{R}^2$, we let $T_y = \inf \{t \ge 0 : B_t = y\}$, and we aim to show, using only elementary properties of Brownian motion, that $\lambda(\{B_t : 0 \le t \le 1\}) = 0$ a.s. For simplicity, we will admit in this problem the fact that $E[\lambda(\{B_t : 0 \le t \le 1\})] < \infty$.

a) Let $A_1 = \{B_t : 0 \leq t \leq 1/2\}$ and $A_2 = \{B_t : 1/2 \leq t \leq 1\}$. Show that the random variables $\lambda(A_1)$ and $\lambda(A_2)$ have the same distribution, which is equal to that of

$$\frac{1}{2} \lambda \ (\{B_t: 0\leqslant t\leqslant 1\}) \ .$$

b) Deduce that

$$E \left[\lambda(\{B_t : 0 \le t \le 1/2\} \cap \{B_t : 1/2 \le t \le 1\})\right] = \int_{\mathbb{R}^2} \lambda(dy) P(y \in A_1 \cap A_2) = 0.$$

c) Show that the processes $(B_{1/2-t} - B_{1/2}, 0 \le t \le 1/2)$ and $(B_{t+1/2} - B_{1/2}, 0 \le t \le 1/2)$ are two independent standard Brownian motions defined on the time-interval [0, 1/2]. Deduce from b) that one has

$$\int_{\mathbb{R}^2} \lambda(dy) P(T_y \leqslant 1/2)^2 = 0,$$

and conclude that $E[\lambda(\{B_t : 0 \leq t \leq 1\})] = 0$.

6 On some probability space (Ω, \mathcal{F}, P) , let M be a random point measure (countable sum of Dirac masses) on $\mathbb{R}_+ = [0, \infty)$, which a.s. assigns a finite mass to bounded sets and is simple, meaning that almost surely

7

$$M(\{t\}) \in \{0, 1\} \qquad \text{for every} \quad t \ge 0.$$

We assume that for every finite union A of bounded subintervals of \mathbb{R}_+ , we have

$$P(M(A) = 0) = e^{-\lambda(A)},$$

where λ is the Lebesgue measure on \mathbb{R}_+ .

a) Let I_1, \ldots, I_n be pairwise disjoint bounded subintervals of \mathbb{R}_+ . Show that the events $\{M(I_i) = 0\}, 1 \leq i \leq n$ are independent.

b) For $n,k \geqslant 0\,,$ we let $D_k^n = [k2^{-n},(k+1)2^{-n})\,.$ Fix J a bounded subinterval of $\mathbb{R}_+,$ and let

$$M_n(J) = \sum_{k \ge 0: D_k^n \subset J} \mathbb{1}_{\{M(D_k^n) \neq 0\}}.$$

(i) Show that $M_n(J)$ follows a Binomial distribution with parameters $(N_n, 1 - e^{-2^{-n}})$, where $N_n = \text{Card} \{k \ge 0 : D_k^n \subset J\}$.

(ii) Show that $M_n(J) \nearrow M(J)$ almost-surely as $n \nearrow \infty$, and deduce that M(J) follows a Poisson distribution with mean $\lambda(J)$.

c) Let J_1, \ldots, J_r be disjoint subintervals of \mathbb{R}_+ . Show that $M_n(J_1), \ldots, M_n(J_r)$ are independent, and conclude that $M(J_1), \ldots, M(J_r)$ are independent. Deduce that, for every Borel function $f : \mathbb{R}_+ \to \mathbb{R}_+$, one has

$$E\left[\exp\left(-M(f)\right)\right] = \exp\left(-\int_{\mathbb{R}_+} \lambda(dx) \left(1 - e^{-f(x)}\right)\right),\,$$

and that M is a Poisson random measure on \mathbb{R}_+ with intensity $\lambda\,.$

END OF PAPER