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1 In this problem, for n > 0 we let Dn
k = [k2−n, (k+1)2−n) , 0 6 k < 2n be the dyadic

sub-intervals of [0, 1) with level n . We let Fn = σ({Dn
k , 0 6 k < 2n}) be the sub-σ-algebra

of the Borel σ-algebra B([0, 1)) that is generated by the dyadic subintervals of [0, 1) with
level n . The Lebesgue measure on ([0, 1) , B([0, 1))) is denoted by λ . The expectations
below are understood with respect to the probability space ([0, 1),B ([0, 1)), λ) .

a) Let µ be a finite non-negative measure on ([0, 1),B ([0, 1))). For n > 1 , define

Xn(x) = 2n
2n−1∑
k=0

µ(Dn
k )1Dn

k
(x) , x ∈ [0, 1) .

Show that (Xn , n > 0) is a martingale in some filtered probability space to be made
explicit.

b) Justify that Xn → X∞ a.s. as n → ∞ , where X∞ is integrable and for every n > 0 ,
Xn > E [X∞|Fn] a.s.

c) We let X∞ · λ be the measure with density X∞ with respect to λ , meaning that

X∞ · λ(A) = E[X∞1A] , A ∈ B ([0, 1)) .

(i) Use b) to show that µ(f) > X∞ ·λ(f) for every non-negative measurable function
f , and conclude that ν = µ−X∞ · λ defines a non-negative measure on ([0, 1),B ([0, 1))).
If νn, λn denote the restrictions of ν and λ to Fn, show that νn admits a density Yn with
respect to λn, which is given by

Yn = Xn − E [X∞|Fn] .

(ii) Show that limn→∞ Yn = 0 a.s. on the probability space ([0, 1),B ([0, 1)), λ) .

(iii) On the other hand, by estimating the ν-measure of the event {Yn 6 ε} , show
that

ν

({
x ∈ [0, 1) : lim sup

n→∞
Yn(x) = 0

})
= 0 .
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2 Let n > 1 and θ1 , . . . , θn > 0 be positive real numbers with sum

S :=
n∑

i=1

θi 6 1 .

On some probability space (Ω,F , P ) consider n independent random variables U1, . . . , Un

all uniformly distributed on [0, 1] , and let Ft be the σ-algebra generated by the events
{Ui 6 s} , 1 6 i 6 n , 0 6 s 6 t . We define

Xt =
n∑

i=1

θi1{Ui6t} , 0 6 t 6 1 .

a) Show that the process (Mt, 0 6 t < 1) defined by

Mt :=
S −Xt

1− t
, 0 6 t < 1 ,

is a càdlàg martingale with respect to the filtration (Ft , 0 6 t < 1) .

b) Is the martingale (Mt, 0 6 t < 1) uniformly integrable?

c) By introducing suitable truncations of the stopping time

T := inf {t ∈ [0, 1] : 1− S + Xt 6 t} ,

or otherwise, show that

P (1− S + Xt > t for all t ∈ [0, 1)) = 1− S

[Hint: observe that MT− = 1 whenever T < 1 ].
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3 On some probability space (Ω,F , P ) , let (Bt , t > 0) be a standard real-valued
Brownian motion. For a > 0 we let

σa = inf {t > 0 : |Bt| = a} .

a) Show that for some constant ρ ∈ (0, 1) , it holds that for every n > 0 ,

P (σ1 > n) 6 ρn ,

by noticing for instance that

{σ1 > n} ⊂ {|B1| 6 2 , |B2 −B1| 6 2 , . . . , |Bn −Bn−1| 6 2} .

Deduce that E [(σ1)p] < ∞ for every p > 1 .

b) Show that there exists a constant C > 0 such that E [σa] = Ca2 for every a > 0 .

c) We define stopping times (σn
a , n > 0) by

σ0
a = 0 , σ1

a = σa , σn+1
a = inf {t > σn

a : |Bt −Bσn
a
| = a} .

Show that the variables σn+1
a − σn

a are identically distributed. By computing the variance
of σ22n

2−n or otherwise, show that

lim
n→∞

σ22n

2−n = C a.s.

d) Show that the laws of the random variables Bσn
1/
√

n
, n > 1 converge weakly as n →∞

to a limiting law to be made explicit. Deduce the exact value of C by comparing with
part c).
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4 On some probability space (Ω,F , P ), let (Bt, t > 0) be a standard real-valued
Brownian motion. For t > 0 , we let St = sup 06s6t Bs .

a) Show that x−1P (S1 6 x) → c as x ↘ 0 , for some constant c > 0 .

b) We consider a function f : (0,∞) → (0,∞) which is increasing, continuous, and satisfies∫
(0,1]

f(t)
dt

t
< ∞ .

Show that ∑
n>0

P (S2−n−1 < 2−n/2 f(2−n)) < ∞ .

c) Deduce that, almost surely,

lim inf
t↓0

St√
t f(t)

> 1 ,

and hence show that this lim inf is in fact equal to ∞ a.s.
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5 On some probability space (Ω,F , P ), let (Bt, t > 0) be a standard Brownian motion
taking its values in R2. We let λ be the Lebesgue measure on R2. For y ∈ R2, we let
Ty = inf {t > 0 : Bt = y} , and we aim to show, using only elementary properties of
Brownian motion, that λ ({Bt : 0 6 t 6 1}) = 0 a.s. For simplicity, we will admit in this
problem the fact that E [λ ({Bt : 0 6 t 6 1})] < ∞ .

a) Let A1 = {Bt : 0 6 t 6 1/2} and A2 = {Bt : 1/2 6 t 6 1} . Show that the random
variables λ(A1) and λ(A2) have the same distribution, which is equal to that of

1
2

λ ({Bt : 0 6 t 6 1}) .

b) Deduce that

E [λ({Bt : 0 6 t 6 1/2} ∩ {Bt : 1/2 6 t 6 1})] =
∫

R2
λ(dy) P (y ∈ A1 ∩A2) = 0 .

c) Show that the processes (B1/2−t−B1/2 , 0 6 t 6 1/2) and (Bt+1/2−B1/2 , 0 6 t 6 1/2)
are two independent standard Brownian motions defined on the time-interval [0, 1/2] .
Deduce from b) that one has ∫

R2
λ(dy) P (Ty 6 1/2)2 = 0 ,

and conclude that E [λ({Bt : 0 6 t 6 1})] = 0 .
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6 On some probability space (Ω,F , P ), let M be a random point measure (countable
sum of Dirac masses) on R+ = [0,∞) , which a.s. assigns a finite mass to bounded sets
and is simple, meaning that almost surely

M({t}) ∈ {0, 1} for every t > 0 .

We assume that for every finite union A of bounded subintervals of R+, we have

P (M(A) = 0) = e−λ(A) ,

where λ is the Lebesgue measure on R+.

a) Let I1, . . . , In be pairwise disjoint bounded subintervals of R+. Show that the events
{M(Ii) = 0}, 1 6 i 6 n are independent.

b) For n, k > 0 , we let Dn
k = [k2−n, (k +1)2−n) . Fix J a bounded subinterval of R+, and

let
Mn(J) =

∑
k>0 : Dn

k
⊂J

1{M(Dn
k
) 6= 0} .

(i) Show that Mn(J) follows a Binomial distribution with parameters
(Nn , 1− e−2−n

) , where Nn = Card {k > 0 : Dn
k ⊂ J} .

(ii) Show that Mn(J) ↗ M(J) almost-surely as n ↗ ∞ , and deduce that M(J)
follows a Poisson distribution with mean λ(J) .

c) Let J1, . . . , Jr be disjoint subintervals of R+. Show that Mn(J1), . . . ,Mn(Jr) are
independent, and conclude that M(J1), . . . ,M(Jr) are independent. Deduce that, for
every Borel function f : R+ → R+, one has

E [exp (−M(f))] = exp

(
−
∫

R+

λ(dx) (1− e−f(x))

)
,

and that M is a Poisson random measure on R+ with intensity λ .
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