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1 In this exercise, we consider a filtered probability space (Ω,F , (Fn, n > 0), P ), and
all definitions are understood with respect to this filtered space.

a) Let (Xn, n > 0) be a submartingale which is bounded in L1.

(i) Prove that for every n > 0, the sequence (E[X+
p |Fn], p > n) is increasing and converges

to an a.s. limit Mn.

(ii) Show that (Mn, n > 0) is a non-negative martingale which is bounded in L1, and
conclude that Xn can be written in the form Mn−Yn, where (Yn, n > 0) is a non-negative
supermartingale which is bounded in L1.

b) Let (Xn, n > 0) be a supermartingale which is bounded in L1. Show that Xn can be
written in the form Mn +Yn, where (Mn, n > 0) is a uniformly integrable martingale, and
(Yn, n > 0) is a supermartingale with limit 0 when n →∞.
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2 Let Ω = {(ω1, ω2, . . .) : ωi ∈ R, i > 1} be the set of real-valued sequences. For
ω ∈ Ω and n > 1 we let Xn(ω) = ωn, and we let S0 = 0, Sn = X1 + . . . + Xn. We define
Fn = σ(Xk, 1 6 k 6 n) and F = F∞.

Let µ be a probability measure on R. We let P be the unique measure on (Ω,F)
under which the sequence X1, X2, . . . is independent and identically distributed with
common distribution µ. We let Pn be the restriction of P to Fn.

For λ > 0 we let φ(λ) = E[eλX1 ], where E is the expectation associated with P .
We assume that φ(λ) is finite for every λ > 0.

a) Show that under P , for every λ > 0 the process Mλ = (exp(λSn)/φ(λ)n, n > 0) is an
(Fn, n > 0)-martingale.

b) Let Pλ
n be the probability measure on (Ω,Fn) which is absolutely continuous with

respect to Pn with density
dPλ

n

dPn
= Mλ

n .

Show that under Pλ
n , the random variables X1, . . . , Xn are independent and identically

distributed. Identify their common distribution µλ, and show that it has mean φ′(λ)/φ(λ).

c) In this part, we assume that µ is supported by Z− ∪ {1} = {. . . ,−3,−2,−1, 0, 1}. For
k > 0 let

τk = inf{n > 0 : Sn > k}.

We let Pλ be the unique probability distribution on (Ω,F) under which (Xn, n > 1) is
independent and identically distributed with common distribution µλ, and we let Eλ be
the expectation associated with Pλ.

Show that

P (τk 6 n) = Eλ[(Mλ
n )−1

1{τk6n}] = Eλ[(Mλ
τk

)−1
1{τk6n}] = e−λkEλ[φ(λ)τk1{τk6n}].

Assuming that there exists λ0 > 0 such that φ(λ0) = 1, φ′(λ0) > 0, compute P (τk < ∞),
and deduce the law of supn>0 Sn under P .
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3 Let (Mt, t > 0) be a continuous-time martingale with respect to a filtered space
(Ω,F , (Ft, t > 0), P ), such that (Mt, t > 0) is a non-negative process with continuous
paths, and which converges a.s. to 0 as t →∞. Let M∗ = supt>0 Mt. We use the notation
P (A|G) = E[1A|G], where A is an event and G a sub-σ-algebra of F .

a) Show that for every x > 0,

P (M∗ > x|F0) = 1 ∧ (M0/x).

[Hint: Use the stopped martingale (Mt∧Tx
, t > 0), where Tx = inf{t > 0 : Mt > x}.]

b) Deduce that M∗ has the same distribution as M0/U , where U is uniform on [0, 1] and
independent of M0.

c) Let (Bt, t > 0) be a Brownian motion started at B0 = a > 0. Give the distribution of
sup06t6T0

Bt, where T0 = inf{t > 0 : Bt = 0}.

4 State and prove the reflection principle for the standard 1-dimensional Brownian
motion.

Let (Bt, t > 0) be a standard 1-dimensional Brownian motion defined on some
probability space (Ω,F , P ). Use the reflection principle to show that St = sup06s6t Bs

has the same law as |Bt| for every t > 0.

Let a < b < c < d be non-negative real numbers. Show that

P

(
sup

a6t6b
Bt = sup

c6t6d
Bt

)
= 0.

5 Let (Bt, t > 0) be a standard 1-dimensional Brownian motion. For x ∈ R, let
Tx = inf{t > 0 : Bt = x}. Fix a, b > 0, and let T = Ta ∧ T−b.

By considering processes of the form (exp(λBt−λ2t/2), t > 0), or otherwise, prove
that for every λ ∈ R,

E(e−λ2T/2
1{T=Ta}) =

sinh(λb)
sinh(λ(a + b))

,

and that

E(e−λ2T/2) =
cosh(λ(a− b)/2)
cosh(λ(a + b)/2)

.
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6 a) Write carefully the definition of a Poisson random measure on a measurable
space (E, E), with σ-finite intensity µ(dx).

b) Fix d > 1, and let λ(dx) be Lebesgue measure on Rd. We let B(0, r) be the open
Euclidean ball in Rd with centre 0 and radius r > 0, and we let vd = λ(B(0, 1)).

Let M(dx) be a Poisson random measure on Rd with intensity λ(dx). If f is a
non-negative measurable function and ν is a non-negative measure, we let ν(f) =

∫
fdν.

(i) Let R = sup{r > 0 : M(B(0, r)) = 0}. Show that the distribution of R has a density
and compute it.

(ii) Let Nr = M(B(0, r)) for r > 0. Let f : Rd → R+ be a continuous function with
compact support. Compute E[Nr exp(−M(f))].

(iii) Show that the two quantities

E[exp(−M(f))|Nr > 1] and
E[Nr exp(−M(f))]

P (Nr > 1)

have the same limit as r ↓ 0, and compute this limit.
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