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1 In this exercise, we consider a filtered probability space (2, F, (F,,n > 0), P), and
all definitions are understood with respect to this filtered space.

a) Let (X,,,n > 0) be a submartingale which is bounded in L!.

(i) Prove that for every n > 0, the sequence (E[X,5|F,], p > n) is increasing and converges
to an a.s. limit M,,.

(ii) Show that (M,,n > 0) is a non-negative martingale which is bounded in L!, and
conclude that X, can be written in the form M,, —Y,,, where (Y,,,n > 0) is a non-negative
supermartingale which is bounded in L.

b) Let (X,,n > 0) be a supermartingale which is bounded in L'. Show that X,, can be
written in the form M,, +Y,,, where (M,,n > 0) is a uniformly integrable martingale, and
(Y,,n > 0) is a supermartingale with limit 0 when n — oo.

Paper 32



B UNIVERSITY OF
¥ CAMBRIDGE 3

2 Let Q = {(w1,wa,...) : w; € R,i > 1} be the set of real-valued sequences. For
weQand n > 1 we let X,,(w) =wy,, and we let Sy =0, S, = X1 + ...+ X,,. We define
Fn=0(Xp,1<k<n)and F = Fu.

Let p be a probability measure on R. We let P be the unique measure on (€2, F)
under which the sequence X7, Xs,... is independent and identically distributed with
common distribution p. We let P, be the restriction of P to F,.

For A > 0 we let ¢(\) = E[e**1], where E is the expectation associated with P.
We assume that ¢()) is finite for every A > 0.

a) Show that under P, for every A > 0 the process M* = (exp(AS,)/d(A)",n = 0) is an
(Fn,n = 0)-martingale.

b) Let P} be the probability measure on (Q,F,) which is absolutely continuous with
respect to P, with density

dp)
no— M.
dpP, n

Show that under P, the random variables X1, ..., X,, are independent and identically
distributed. Identify their common distribution *, and show that it has mean ¢’(\)/¢(\).

c¢) In this part, we assume that p is supported by Z_ U {1} ={...,-3,-2,-1,0,1}. For
k>0 let
T, =inf{n > 0: S, > k}.

We let P? be the unique probability distribution on (€2, F) under which (X,,,n > 1) is
independent and identically distributed with common distribution p*, and we let E* be
the expectation associated with P*.

Show that
P(r, < n) = EMN(M)) "r,<ny] = EM(M2) 'L <ny] = € ¥ EMOA) ™ Liro<ny].

Assuming that there exists Ao > 0 such that ¢(N\g) = 1,¢'(Ao) > 0, compute P(7; < 00),
and deduce the law of sup,,», S, under P.
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3 Let (M, t > 0) be a continuous-time martingale with respect to a filtered space
(Q,F,(Fi,t = 0),P), such that (M;,t > 0) is a non-negative process with continuous
paths, and which converges a.s. to 0 as t — oco. Let M™* = sup,>, M;. We use the notation
P(A|G) = E[14|G], where A is an event and G a sub-o-algebra of F.

a) Show that for every x > 0,
P(M* > z|Fy) =1 A (My/x).

[Hint: Use the stopped martingale (Miar,,t > 0), where T,, = inf{t > 0: M; > z}.]

b) Deduce that M* has the same distribution as M /U, where U is uniform on [0, 1] and
independent of Mj.

c) Let (B, t > 0) be a Brownian motion started at By = a > 0. Give the distribution of
Supg<;<1, Bt, where Ty = inf{t > 0 : B; = 0}.

4 State and prove the reflection principle for the standard 1-dimensional Brownian
motion.

Let (B;,t > 0) be a standard 1-dimensional Brownian motion defined on some
probability space (£2,F, P). Use the reflection principle to show that S; = supgc.<; Bs
has the same law as |By| for every t > 0.

Let a < b < ¢ < d be non-negative real numbers. Show that

P< sup B; = sup Bt> =0.

a<t<b c<t<d

5 Let (By,t > 0) be a standard 1-dimensional Brownian motion. For z € R, let
T,=inf{t >0: By =x}. Fixa,b> 0, and let T =T, AT_,.

By considering processes of the form (exp(AB; — A%t/2),t > 0), or otherwise, prove
that for every A € R,
sinh(Ab)

Ble™ P ra,y) = sinh(A(a + b))’

and that
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6 a) Write carefully the definition of a Poisson random measure on a measurable
space (F, &), with o-finite intensity p(dx).

b) Fix d > 1, and let A\(dz) be Lebesgue measure on R?. We let B(0,7) be the open
Euclidean ball in R? with centre 0 and radius r > 0, and we let vg = A\(B(0,1)).

Let M(dz) be a Poisson random measure on R¢ with intensity A(dz). If f is a
non-negative measurable function and v is a non-negative measure, we let v(f) = [ fdv.

(i) Let R =sup{r > 0: M(B(0,r)) = 0}. Show that the distribution of R has a density
and compute it.

(ii) Let N, = M(B(0,7)) for r > 0. Let f : R — R, be a continuous function with
compact support. Compute E[N, exp(—M(f))].

(iii) Show that the two quantities

E[N; exp(=M(f))]

Elexp(=M(f))|N, >1]  and P(N, > 1)

have the same limit as r | 0, and compute this limit.

END OF PAPER
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