

MATHEMATICAL TRIPOS Part III

Monday 5 June, 2006 9 to 12

PAPER 32

ADVANCED PROBABILITY

Attempt **FOUR** questions. There are **SIX** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. $\mathbf{2}$

1 In this exercise, we consider a filtered probability space $(\Omega, \mathcal{F}, (\mathcal{F}_n, n \ge 0), P)$, and all definitions are understood with respect to this filtered space.

a) Let $(X_n, n \ge 0)$ be a submartingale which is bounded in L^1 .

(i) Prove that for every $n \ge 0$, the sequence $(E[X_p^+|\mathcal{F}_n], p \ge n)$ is increasing and converges to an a.s. limit M_n .

(ii) Show that $(M_n, n \ge 0)$ is a non-negative martingale which is bounded in L^1 , and conclude that X_n can be written in the form $M_n - Y_n$, where $(Y_n, n \ge 0)$ is a non-negative supermartingale which is bounded in L^1 .

b) Let $(X_n, n \ge 0)$ be a supermartingale which is bounded in L^1 . Show that X_n can be written in the form $M_n + Y_n$, where $(M_n, n \ge 0)$ is a uniformly integrable martingale, and $(Y_n, n \ge 0)$ is a supermartingale with limit 0 when $n \to \infty$.

2 Let $\Omega = \{(\omega_1, \omega_2, \ldots) : \omega_i \in \mathbb{R}, i \ge 1\}$ be the set of real-valued sequences. For $\omega \in \Omega$ and $n \ge 1$ we let $X_n(\omega) = \omega_n$, and we let $S_0 = 0, S_n = X_1 + \ldots + X_n$. We define $\mathcal{F}_n = \sigma(X_k, 1 \le k \le n)$ and $\mathcal{F} = \mathcal{F}_\infty$.

Let μ be a probability measure on \mathbb{R} . We let P be the unique measure on (Ω, \mathcal{F}) under which the sequence X_1, X_2, \ldots is independent and identically distributed with common distribution μ . We let P_n be the restriction of P to \mathcal{F}_n .

For $\lambda \ge 0$ we let $\phi(\lambda) = E[e^{\lambda X_1}]$, where E is the expectation associated with P. We assume that $\phi(\lambda)$ is finite for every $\lambda \ge 0$.

a) Show that under P, for every $\lambda \ge 0$ the process $M^{\lambda} = (\exp(\lambda S_n)/\phi(\lambda)^n, n \ge 0)$ is an $(\mathcal{F}_n, n \ge 0)$ -martingale.

b) Let P_n^{λ} be the probability measure on (Ω, \mathcal{F}_n) which is absolutely continuous with respect to P_n with density

$$\frac{\mathrm{d}P_n^\lambda}{\mathrm{d}P_n} = M_n^\lambda.$$

Show that under P_n^{λ} , the random variables X_1, \ldots, X_n are independent and identically distributed. Identify their common distribution μ^{λ} , and show that it has mean $\phi'(\lambda)/\phi(\lambda)$.

c) In this part, we assume that μ is supported by $\mathbb{Z}_{-} \cup \{1\} = \{\dots, -3, -2, -1, 0, 1\}$. For $k \ge 0$ let

$$\tau_k = \inf\{n \ge 0 : S_n \ge k\}.$$

We let P^{λ} be the unique probability distribution on (Ω, \mathcal{F}) under which $(X_n, n \ge 1)$ is independent and identically distributed with common distribution μ^{λ} , and we let E^{λ} be the expectation associated with P^{λ} .

Show that

$$P(\tau_k \leqslant n) = E^{\lambda}[(M_n^{\lambda})^{-1}\mathbb{1}_{\{\tau_k \leqslant n\}}] = E^{\lambda}[(M_{\tau_k}^{\lambda})^{-1}\mathbb{1}_{\{\tau_k \leqslant n\}}] = e^{-\lambda k} E^{\lambda}[\phi(\lambda)^{\tau_k}\mathbb{1}_{\{\tau_k \leqslant n\}}].$$

Assuming that there exists $\lambda_0 > 0$ such that $\phi(\lambda_0) = 1, \phi'(\lambda_0) > 0$, compute $P(\tau_k < \infty)$, and deduce the law of $\sup_{n \ge 0} S_n$ under P.

4

3 Let $(M_t, t \ge 0)$ be a continuous-time martingale with respect to a filtered space $(\Omega, \mathcal{F}, (\mathcal{F}_t, t \ge 0), P)$, such that $(M_t, t \ge 0)$ is a non-negative process with continuous paths, and which converges a.s. to 0 as $t \to \infty$. Let $M^* = \sup_{t\ge 0} M_t$. We use the notation $P(A|\mathcal{G}) = E[\mathbb{1}_A|\mathcal{G}]$, where A is an event and \mathcal{G} a sub- σ -algebra of \mathcal{F} .

a) Show that for every x > 0,

$$P(M^* \ge x | \mathcal{F}_0) = 1 \land (M_0/x).$$

[Hint: Use the stopped martingale $(M_{t \wedge T_x}, t \ge 0)$, where $T_x = \inf\{t \ge 0 : M_t \ge x\}$.]

b) Deduce that M^* has the same distribution as M_0/U , where U is uniform on [0, 1] and independent of M_0 .

c) Let $(B_t, t \ge 0)$ be a Brownian motion started at $B_0 = a > 0$. Give the distribution of $\sup_{0 \le t \le T_0} B_t$, where $T_0 = \inf\{t \ge 0 : B_t = 0\}$.

4 State and prove the reflection principle for the standard 1-dimensional Brownian motion.

Let $(B_t, t \ge 0)$ be a standard 1-dimensional Brownian motion defined on some probability space (Ω, \mathcal{F}, P) . Use the reflection principle to show that $S_t = \sup_{0 \le s \le t} B_s$ has the same law as $|B_t|$ for every $t \ge 0$.

Let a < b < c < d be non-negative real numbers. Show that

$$P\left(\sup_{a\leqslant t\leqslant b} B_t = \sup_{c\leqslant t\leqslant d} B_t\right) = 0.$$

5 Let $(B_t, t \ge 0)$ be a standard 1-dimensional Brownian motion. For $x \in \mathbb{R}$, let $T_x = \inf\{t \ge 0 : B_t = x\}$. Fix a, b > 0, and let $T = T_a \wedge T_{-b}$.

By considering processes of the form $(\exp(\lambda B_t - \lambda^2 t/2), t \ge 0)$, or otherwise, prove that for every $\lambda \in \mathbb{R}$,

$$E(e^{-\lambda^2 T/2} \mathbb{1}_{\{T=T_a\}}) = \frac{\sinh(\lambda b)}{\sinh(\lambda(a+b))},$$

and that

$$E(e^{-\lambda^2 T/2}) = \frac{\cosh(\lambda(a-b)/2)}{\cosh(\lambda(a+b)/2)}.$$

5

6 a) Write carefully the definition of a Poisson random measure on a measurable space (E, \mathcal{E}) , with σ -finite intensity $\mu(dx)$.

b) Fix $d \ge 1$, and let $\lambda(dx)$ be Lebesgue measure on \mathbb{R}^d . We let B(0,r) be the open Euclidean ball in \mathbb{R}^d with centre 0 and radius $r \ge 0$, and we let $v_d = \lambda(B(0,1))$.

Let M(dx) be a Poisson random measure on \mathbb{R}^d with intensity $\lambda(dx)$. If f is a non-negative measurable function and ν is a non-negative measure, we let $\nu(f) = \int f d\nu$.

(i) Let $R = \sup\{r \ge 0 : M(B(0,r)) = 0\}$. Show that the distribution of R has a density and compute it.

(ii) Let $N_r = M(B(0,r))$ for $r \ge 0$. Let $f : \mathbb{R}^d \to \mathbb{R}_+$ be a continuous function with compact support. Compute $E[N_r \exp(-M(f))]$.

(iii) Show that the two quantities

$$E[\exp(-M(f))|N_r \ge 1]$$
 and $\frac{E[N_r \exp(-M(f))]}{P(N_r \ge 1)}$

have the same limit as $r \downarrow 0$, and compute this limit.

END OF PAPER