

MATHEMATICAL TRIPOS Part III

Thursday 30 May 2002 9 to 12

PAPER 27

ADVANCED PROBABILITY

Attempt **FOUR** questions There are **six** questions in total The questions carry equal weight

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. 2

1 Define a Lévy process with characteristic exponent ψ . Let X_t be such a process. Show that, for all $u \in \mathbb{R}$, the following process is a martingale:

$$M_t^u = \exp\{iuX_t - t\psi(u)\}.$$

What is an infinitely divisible distribution? Let X_t be a Lévy process. Show that the distribution of X_1 is infinitely divisible.

State carefully, without proof, the Lévy-Khinchin theorem.

Let X_t be a continuous Lévy process. Show that it is expressible in the form $bt + \sqrt{aB_t}$, where B. is the standard Brownian motion.

[Hint: Consider, for each $\varepsilon > 0$, the Lévy process with characteristic exponent

$$\psi_{\varepsilon}(u) = \int_{|y| \ge \varepsilon} \left(e^{iuy} - 1 - iuy \mathbf{1}_{|y| < 1} \right) K(dy).]$$

2 State carefully, without proof, the optional stopping theorem.

Let T be a stopping time with $\mathsf{E}T < \infty$ and let X_n be a supermartingale with uniformly bounded increments, i.e., there exists a finite constant K > 0 such that

$$|X_n(\omega) - X_{n-1}(\omega)| \le K \qquad \forall (n,\omega).$$

Show that X_T is integrable and $\mathsf{E}(X_T) \leq \mathsf{E}(X_0)$.

Consider successive flips of a coin having probability p of landing heads. Use a martingale argument to compute the expected number of flips until the sequence HHTTHHT appears.

3 Let B_t be a Brownian motion starting at the origin, $B_0 = 0$. Show that $M_t = \exp\{\lambda B_t - \frac{1}{2}\lambda^2 t\}$ is a martingale.

Consider the process $X_t = B_t + \mu t$, a Brownian motion with drift $\mu > 0$, $X_0 = 0$. For positive *a* and *b*, define the stopping time

$$T = \inf \{ t \ge 0 : X_t = a \text{ or } X_t = -b \}.$$

Show that $T < \infty$ almost surely. Compute $\mathsf{P}(X_T = a)$ and $\mathsf{E}(T)$.

4 Define standard one-dimensional Brownian motion; state the Wiener theorem and sketch its proof.

Show that, almost surely,

(a) trajectories of the Brownian motion B_t are Hölder continuous of exponent α for all $\alpha < 1/2$;

(b) there is no interval (r,s) on which $t \mapsto B_t$ is Hölder continuous of exponent α for any $\alpha > 1/2$.

Explain briefly the relation of this result to differentiability properties of B_t .

5 Let μ and $(\mu_n : n \in \mathbb{N})$ be probability measures in $\mathbf{C}([0,1],\mathbb{R})$, the space of real continuous functions on [0,1]. It is known that if the sequence μ_n is tight and if all finite-dimensional distributions of μ_n converge weakly to those of μ , then the sequence μ_n converges weakly in $\mathbf{C}([0,1],\mathbb{R})$ to μ . Use this fact to get a proof of the Donsker invariance principle for random walks according to the following steps:

(a) Let $(S_n)_{n\geq 0}$ be a random walk with i.i.d. steps ξ of mean 0, variance 1 and finite fourth moment. Write $(S_t)_{t\geq 0}$ for the linear interpolation

$$S_{n+r} = (1-r)S_n + rS_{n+1}, \qquad r \in [0,1],$$

and denote by μ_N the probability distribution of $S_t^N = N^{-1/2}S_{Nt}$, $t \in [0, 1]$. For any $k \ge 1$ and $0 = t_0 < t_1 < \ldots < t_k \le 1$, let $\mu_N^{t_1, \ldots, t_k}$ be the law of

$$\left(S_{t_1}^N, S_{t_2}^N, \dots, S_{t_k}^N\right).$$

Show that the characteristic functions

$$\varphi_{t_1,\ldots,t_k}^N(\lambda_1,\ldots,\lambda_k) = \mathsf{E}\exp\Big\{i\sum_{l=1}^k \lambda_l \big(S_{t_l}^N - S_{t_{l-1}}^N\big)\Big\}$$

satisfy

$$\lim_{N \to \infty} \varphi_{t_1, \dots, t_k}^N(\lambda_1, \dots, \lambda_k) = \exp\left\{-\frac{1}{2}\sum_{l=1}^k \lambda_l^2(t_l - t_{l-1})\right\}$$

and thus deduce that all finite-dimensional distributions $\mu_N^{t_1,\ldots,t_k}$ converge to the corresponding finite-dimensional distributions of the Wiener measure μ on [0, 1].

(b) For every $N \ge 1$, consider a random process X_t^N such that

$$X_{\bullet}^{N} \in \mathbf{C}_{\mathbf{0}}([0,1],\mathbb{R}) = \left\{ f \in \mathbf{C}([0,1],\mathbb{R}) : f(0) = 0 \right\}$$

and let ν_N be its distribution. The sequence of such measures $(\nu_N; N \ge 1)$ is known to be tight if for some positive C, γ, α and all $N \ge 1, t_1, t_2 \in [0, 1]$,

$$\mathsf{E} |X_{t_1}^N - X_{t_2}^N|^{\gamma} \le C |t_1 - t_2|^{1+\alpha}.$$

Verify that the sequence of measures μ_N in (a) is tight and thus deduce the Donsker invariance principle.

5

6 Let $(\xi_t : t \in \mathbb{N}_0 = \mathbb{N} \cup \{0\})$ be the simple symmetric random walk on \mathbb{Z}^d , $d \geq 3$, starting at the origin, $\xi_0 = 0$. Let, further, $(h(t, x) : t \in \mathbb{N}, x \in \mathbb{Z}^d)$ be i.i.d. random variables such that $\mathsf{P}(h = \pm 1) = 1/2$. For a fixed $\varepsilon \in (0, 1)$ and $T \in \mathbb{N}$, consider the process

$$\kappa_T = \prod_{j=1}^T \left(1 + \varepsilon h(j, \xi_j) \right)$$

Denote by $\langle \cdot \rangle$ the expectation w.r.t. the process ξ and by $\mathsf{E}(\cdot)$ the expectation w.r.t. the *h*-variables. The aim is to describe the limiting behaviour of $\langle \kappa_T \rangle$ as $T \to \infty$.

(a) Verify that

$$\langle \kappa_t \rangle \equiv \frac{1}{(2d)^t} \sum_{\omega} \prod_{j=1}^t (1 + \varepsilon h(j, \xi_j))$$

is a martingale w.r.t. the filtration $(\mathcal{F}_t)_{t\geq 0}$, $\mathcal{F}_t = \sigma(h(s,x) : s \leq t, x \in \mathbb{Z}^d)$. The summation above is over all nearest neighbour paths $\omega = (\xi_1, \ldots, \xi_t)$ of length t starting at the origin. Deduce that $\langle \kappa_t \rangle$ converges a.s., as $t \to \infty$, to some random variable $\zeta \geq 0$.

(b) Let $\xi^{(1)}$, $\xi^{(2)}$ be two independent copies of the random walk ξ (independent also of the *h*-variables) with the corresponding processes

$$\kappa_t^{(i)} = \prod_{j=1}^t (1 + \varepsilon h(j, \xi_j^{(i)})), \quad i = 1, 2.$$

Using the identity

$$\mathsf{E}(\langle \kappa_t \rangle^2) = \mathsf{E}(\langle \kappa_t^{(1)} \kappa_t^{(2)} \rangle)$$

(and by expressing $\mathsf{E}(\langle \kappa_t^{(1)} \kappa_t^{(2)} \rangle)$ in terms of the intersections of $\xi^{(1)}$ and $\xi^{(2)}$) or otherwise, show that, for ε small enough, $\langle \kappa_t \rangle$ is a martingale bounded in L^2 and thus its limit ζ satisfies $\mathsf{E}\zeta = \mathsf{E}\langle \kappa_t \rangle = 1$.

[**Hint.** You may use without proof the following transience property of random walks in \mathbb{Z}^d whose steps are bounded and symmetrically distributed w.r.t. zero: in dimension $d \geq 3$, after each visit to the origin such a walk has positive probability of never returning back to the origin.]

(c) Show that $\{\zeta = 0\}$ is measurable w.r.t. the tail σ -field \mathcal{T}_{∞} ,

$$\mathcal{T}_{\infty} = \bigcap_{t} \sigma \left(h(s, x) : s \ge t, x \in \mathbb{Z}^{d} \right),$$

and deduce that $\mathsf{P}(\zeta = 0) = 0$, i.e. $\zeta > 0$ a.s.

Paper 27