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1 (i) In a flat FRW universe (Ω = 1) assume that the matter content can be described
as a perfect fluid with energy-momentum tensor

Tµν = (ρ+ P )uµuν + Pgµν ,

where ρ is the energy density, P is the pressure (satisfying the equation of state P = wρ)
and uµ ≈ a−1(1, v) is the four-velocity of the fluid. In synchronous gauge (with perturbed
line element ds2 = a2(τ)

[
−dτ2 + (δij + hij)dxidxj

]
), show that the linearized energy-

momentum tensor can be written in the form

T 00 =
1
a2
ρ̄(1 + δ) , T 0i =

1
a2
ρ̄(1 + w)vi , T ij =

1
a2
ρ̄w[(1 + δ)δij − hij ] ,

where δ is the density perturbation and ρ̄ is the homogeneous background density. Show
that energy-momentum conservation implies that the perturbations obey the following
equations

δ′ + (1 + w)ik · v + 1
2 (1 + w)h′ = 0 ,

v′ + (1− 3w)
a′

a
v +

w

1 + w
ikδ = 0 ,

(†)

where k is the comoving wavevector (k = |k|) and primes denote differentiation with
respect to conformal time τ (dτ = dt/a).

[Hint: You may assume that Γ0
00 = a′

a , Γ0
0i = Γi00 = 0, Γ0

ij = a′

a (δij + hij) + 1
2h
′
ij ,

Γi0j = a′

a δij + 1
2h
′
ij and Γijk = 1

2 (hij,k + hik,j − hjk,i).]

(ii) Now assume that the late universe is dominated by a non-relativistic fluid
component ρm well after matter-radiation equality at teq and that you are given the scalar
trace metric perturbation equation (h ≡ hii):

h′′ +
a′

a
h′ + 3

(
a′

a

)2

(1 + 3w)δm = 0 .

Show from this equation, together with (†) that if the non-relativistic pressure satisfies
Pm = wmρm � ρm (with wm const.), then the density perturbation δm will obey:

δ′′m +
a′

a
δ′m −

[
4πGρ̄ma2 − c2sk2

]
δm = 0 , (‡)

where the sound speed is c2s ≡ dP/dρ, here with wm = c2s. Define the Jeans length λJ and
briefly discuss its importance for structure formation before and after recombination.

Define the variance σR of a perturbation on a specific physical lengthscale R. For an
initial power spectrum P (k) = Ak at t = teq in the non-relativistic matter perturbations
δm which obey (‡), show that the variance is constant at horizon crossing k ∼ aH (i.e. the
perturbations are scale-invariant).
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2 A photon with four-momentum pµ (pµpµ = 0) propagating in a flat (Ω = 1) but
perturbed FRW universe with line element

ds2 = a2(τ)
[
−dτ2 + (δij + hij)dxidxj

]
,

at linear order obeys

dq

dτ
= −1

2
qh′ij n̂

in̂j ,
dn̂i

dτ
= O(hij) . (∗)

where q is the comoving photon momentum, n̂i is the (unit) photon propagation direction
and primes denote derivatives with respect to conformal time τ .

(i) The photon distribution function f(x,p, τ) can be expanded about the Planck
spectrum f0(p, τ) = f0(q) as

f(x,p, τ) = f0(q) + f1(x, q, n̂, τ) ,

where the photon momentum p ≡ q/a. Show that the collisionless Boltzmann equation

df

dλ
≡ dxµ

dλ

∂f

∂xµ
+
dpµ

dλ

∂f

∂pµ
= 0

can be re-expressed in the form

∂f1
∂τ

+ n̂i
∂f1
∂xi

+
dq

dτ

df0
dq

+
dq

dτ

∂f1
∂q

+
dn̂i

dτ

∂f1
∂n̂i

= 0 ,

which, using the results from (∗), at linear order reduces to

∂f1
∂τ

+ ikµf1 =
1
2
q
df0
dq
h′ij n̂

in̂j ,

where µ = k̂ · n̂. Finally, argue that the brightness function

∆(x, n̂, τ) ≡ 4
∆T
T
≡ 4π
a4ργ

∫
qf1q

2dq

must therefore satisfy
∆′ + ikµ∆ = −2h′ij n̂

in̂j . (†)

(ii) Argue that if the photon fluid is in equilibrium for τ ≤ τdec, we may approximate
the initial conditions for the photon brightness at decoupling by

∆(k, µ, τdec) = δγ(τdec) + 4n̂ · v(τdec) ,

that is, briefly justify why the higher order moments ∆` ≈ 0 (` ≥ 2) can be neglected.
Hence, assuming instantaneous decoupling, integrate (†) from decoupling τdec to today τ0
to find the Sachs-Wolfe formula for the CMB temperature anisotropy seen at position x
in a direction n:

∆T
T

(x,n, τ0) =
1
4
δγ(x, τdec) + n̂ · v(x, τdec)−

1
2

∫ τ0

τdec

dτh′ij n
inj . (‡)

Briefly explain the meaning of each term in the formula (‡), and describe their scale
dependence on large and small angles.
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3 Consider slicing spacetime into constant time t hypersurfaces Σt each with three
metric (3)gij(xi). The proper distance between two points on Σt and Σt+dt can then be
expressed as

ds2 = −N2dt2 + (3)gij(dxi −N idt)(dxj −N jdt) ,
where the lapse function N(t, xi) defines the change in the proper time and the shift vector
N i(t, xi) the change in the spatial coordinates for a ‘normal’ trajectory defined along
nµ = (−N, 0, 0, 0). For a scalar field φ with Lagrangian

√
−g[−1

2 g
µν∂µφ∂νφ − V (φ)]

and momentum Π = N−1(φ̇+N iφ|i), the evolution equations in this metric become

Π̇ +N iΠ|i −NKΠ−N |iφ|i +Nφ
|i
|i +N dV

dφ = 0 , K̃j
i|j − 2

3K|i = −8πGΠφ|i ,
(3)R+ 2

3K
2 − K̃ijK̃

ij = 16πG[ 12Π2 + 1
2φ|iφ

|i + V (φ)] ,

K̇ +N iK,i +N |i|i −N((3)R+K2) = −8πGN [2φ|iφ|i + 3V (φ)] ,
˙̃Ki
j +NkK̃i

j|k −N
i
|kK̃

k
j +Nk

|jK̃
i
k +N |i|j − 1

3N
|k
|kδ

i
j

−N(3R̃ij +KK̃i
j) = −8πGN [φ|iφ|j − 1

3δ
i
jφ|kφ

|k] ,

where | denotes the covariant derivative in Σ, the intrinsic curvature is (3)Rij (with Ricci
scalar (3)R) and the extrinsic curvature is Kij , which splits into trace and traceless parts
respectively, K ≡ (3)gijK

ij and K̃ij ≡ Kij − 1
3
(3)gijK.

(i) The extrinsic curvature is given as Kij ≡ −ni;j = − 1
2N
−1
(
(3)gij,0 +Ni|j +Nj|i

)
.

Consider the conformal 3-metric (3)g̃ij = a2(t, xi)(3)gij where a6 ≡ (3)g = det((3)gij) and,
hence or otherwise, take the trace of the extrinsic curvature expression to find

K ≡ (3)gijKij = − 1
2N

(
(3)ġ
(3)g

+ 2N i
|i

)
.

In the context of an expanding universe (setting N i = 0), argue that H(t, xi) ≡ −K/3
= ȧ(t, xi)/a(t, xi) can be interpreted as a locally defined Hubble parameter. [Hint: You
may assume that Tr(A−1dA/dt) = d(ln(detA))/dt for any matrix A with detA 6= 0.]

(ii) Explain the long wavelength approximation and why it is accurate under some
circumstances to neglect second order gradients. Rewrite the Einstein equations in long
wavelength form (again with shift N i = 0).

Show that the traceless part of the extrinsic curvature has the general solution
K̃i
j ≈ Cij(x) a−3. Discuss the significance of this result for an inflationary universe. Hence,

also show that

Π̇ = −
(

3H +
1
Π
dV

dφ

)
φ̇ , Π|i = −

(
3H +

1
Π
dV

dφ

)
φ|i ,

Ḣ = −4πGΠ φ̇ , H|i = −4πGΠφ|i .

(†)

(iii) Use the long wavelength Einstein equations (†) to prove that the nonlinear inhomo-
geneous variable

ζi = −∂ia
a

+
H

Π
∂iφ .

is conserved on superhorizon scales, that is, ζ̇i = 0. Briefly discuss the implications of this
result for nonGaussianity from single field inflation.
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