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1 (i) In the 3+1 formalism, we split spacetime using the line element

ds2 = −N2dt2 + (3)gij(dxi −N idt)(dxj −N jdt) ,

with lapse function N(t, , xi), shift vector N i(t, , xi) and the three-metric (3)gij(xi) on
constant time spacelike hypersurfaces Σ. (Latin indices vary over 1,2,3.)

The four-vector nµ = 1
N (1, N i) is normal to Σ and defines the extrinsic curvature

Kij ≡ −ni;j . Show that the extrinsic curvature can be expressed as

Kij = − 1
2N

(
(3)gij,0 + Ni|j + Nj|i

)
,

where | denotes the covariant derivative in Σ and you may assume that the connection is
defined by Γµ

νλ = 1
2gµκ (gνκ,λ + gλκ,ν − gνλ,κ).

(ii) When linearising the 3+1 metric about a flat FRW universe, we define the
scalar perturbations by

N(t, xi) ≡ N̄(t)(1 + Φ(t, xi)) , Ni ≡ −a2B,i , (3)gij = a2[(1− 2Ψ)δij − 2E,ij ] ,

ρ = ρ̄ + δρ and P = P̄ + δP , where bars denote background homogeneous quantities. In
synchronous gauge, we take Φ = 0 and B = 0. Given that metric perturbations transform
as

δg̃µν = δgµν − ḡµν,0ξ
0 − ḡλνξλ

,µ − ḡµλξλ
,ν

under
(t, xi) −→ (t̃, x̃i) = (t + ξ0, xi + ξi) , (ξi ≡ ∂iλ) ,

show that there is a residual gauge freedom in synchronous gauge given by the coordinate
transformation,

ξ0 =
C(xi)

N̄
, λ = C(xi)

∫
N̄

a2
dt + D(xi) ,

where C and D are arbitrary functions of xi only.

In longitudinal Newtonian gauge we take instead E = B = 0. Find a transfor-
mation law that expresses the density perturbation δρ/ρ in Newtonian gauge in terms of
synchronous gauge quantitites.

(iii) Prove that the quantity

ζ = −Ψ +
1
3

δρ

ρ̄ + P̄

is gauge-invariant. Show that ζ is independent of time on superhorizon scales, that is,
ζ̇ = 0 for k � aH. Briefly discuss the importance of the perturbation variable ζ in
inflationary scenarios.

[Hint: You may assume a definite equation of state P = wρ, that the perturbed energy
density conservation equation is

δ̇ρ/N̄ = −3H(δρ + δP ) + (ρ̄ + P̄ )(κ− 3HΦ)−4u ,

and that the metric perturbation Ψ satisfies Ψ̇/N̄ = −HΦ+ 1
3κ+ 1

34χ , where4 ≡ ∇2/a2,
u generates the scalar velocity perturbation, and κ and χ generate the trace and traceless
part of Kij respectively. ]
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2 In a flat FRW universe (Ω = 1), in synchronous gauge (specifying metric pertur-
bations with h0µ = 0), the perturbations of a multicomponent fluid obey the following
evolution equations

δ′N + (1 + wN )ik · vN + 1
2 (1 + wN )h′ = 0 ,

v′
N + (1− 3wN )

a′

a
vN +

wN

1 + wN
ikδN = 0 ,

h′′ +
a′

a
h′ + 3

(
a′

a

)2 ∑
N

(1 + 3wN )ΩNδN = 0 ,

(†)

where δN is the density perturbation, ΩN is the fractional density, vN is the velocity
and PN = wNρN is the equation of state of the Nth fluid component, and k is the
comoving wavevector (k = |k|), h is the trace of the metric perturbation and primes
denote differentiation with respect to conformal time τ (dτ = dt/a).

(i) Suppose that the universe is composed of two components, (comoving) cold
dark matter ρC with no pressure (PC = 0) and a radiation fluid ρR with equation of state
PR = ρR/3. Show that the coupled matter-radiation equations arising from (†) become

δ′′C +
a′

a
δ′C −

3
2

(
a′

a

)2

(ΩCδC + 2ΩRδR) = 0 ,

δ′′R +
1
3
k2δR −

4
3
δ′′C = 0 .

Consider times well before equal matter-radiation (i.e. τ � τeq when ρR = ρC), to find
approximate growing mode solutions for matter and radiation density perturbations which
are initially adiabatic:

δC = Aτ2 =
3
4
δR , for τ � 2π/k ,

δC ≈ B ln τ , δR ≈ C cos(kτ/
√

3) + D sin(kτ/
√

3) , for τ � 2π/k ,

where A,B,C, D are functions of the wavevector k only. Briefly comment on the
implications of these solutions for large-scale structure formation.

(ii) Now consider another flat FRW model in which the late universe is dominated
by a non-relativistic fluid component ρm well after matter-radiation equality at teq. With
the non-relativistic pressure satisfying Pm = wmρm � ρm (wm const.), use the evolution
equations (†) to derive the perturbation equation for δm:

δ̈m + 2
ȧ

a
δ̇m −

[
4πGρ̄m − c2

sk
2/a2

]
δm = 0 , (‡)

where the sound speed is c2
s ≡ dP/dρ, here with wm = c2

s, and dots denote differentiation
with respect to cosmic time t.

Assume that this perturbation equation (‡) is also valid for a polytropic fluid with
an equation of state Pm ∝ ρ

4/3
m , that is, for a non-constant sound speed c2

s. Find explicit
growing and decaying solutions for the density perturbation δm in the matter era t � teq.
Define the Jeans length λJ for this fluid and use it to interpret the behaviour of your
growing mode solution in different wavelength regimes.
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3 (i) Consider a photon with four-momentum pµ (pµpµ = 0) propagating in a
perturbed FRW universe (flat Ω = 1) with line element

ds2 = a2(τ)
[
−dτ2 + (δij + hij)dxidxj

]
,

where k is the comoving wavenumber and k̂i = ki/|k|. A comoving observer with four-
velocity uµ = a−1(1, 0, 0, 0) measures the photon energy to be E = −uµpµ = ap0 ≡ q/a

where q is the comoving momentum. Use the geodesic equation dpµ

dλ + Γµ
νσpνpσ = 0 to

show that along a photon trajectory in (unit) direction n̂i we have to linear order

dq

dτ
= −1

2
qh′

ij n̂
in̂j ,

dn̂i

dτ
= O(hij) .

[Hint: You may assume that Γ0
00 = a′

a , Γ0
0i = 0, Γ0

ij = a′

a (δij + hij) + 1
2h′

ij , Γi
0j =

a′

a δij + 1
2h′

ij and Γi
jk = 1

2 (hij,k + hik,j − hjk,i).]

(ii) Assume that the photon brightness function ∆(xi, n̂i, τ) ≡ 4∆T/T satisfies the
collisionless Boltzmann equation which in Fourier space is given by

∆′ + ikµ∆ = −2h′
ij n̂

in̂j = − 4
3

[
1
2h′ + 1

2 (3µ2 − 1)h′
s

]
, (∗)

where µ = k̂·n̂ and h and hs are the scalar trace and anisotropic scalar metric perturbations
respectively.

Argue that if the photon fluid is in equilibrium for τ ≤ τdec, we may approximate
its initial conditions at photon decoupling by

∆(k, µ, τdec) = δγ(τdec) + 4n · v(τdec) ,

that is, briefly justify why the higher order moments ∆` ≈ 0 (` ≥ 2) can be neglected.

Hence, assuming instantaneous decoupling, integrate (∗) from decoupling τdec to
today τ0 to find the Sachs-Wolfe formula for the CMB temperature anisotropy seen at
position x in a direction n:

∆T

T
(x,n, τ0) =

1
4
δγ(τdec) + n · v(τdec)−

1
2

∫ τ0

τdec

dτh′
ij n̂in̂j . (†)

Explain the meaning of each term in the formula (†), and describe the length scales on
which these contributions are important.

(iii) In Fourier space, integrate the Sachs-Wolfe formula (†) by parts (using the
right hand side of (∗)) to bring it to the following form:

∆T

T
(k, µ, τ0) =

[
1
4
δγ +

3iµ

4k
δ′γ −

iµ

2k
(h′ − h′

s)−
h′′

s

2k2

]
e−ikµ(τ0−τdec)

− 1
2

∫ τ0

τdec

dτ eikµ(τ−τ0)

[
1
6
(h′ − h′

s)−
h′′′

s

2k2

]
.

[You may assume the equation for the photon density perturbation δ′γ + 4
3 ik ·v+ 2

3h′ = 0.]
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