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1 (i) In the 3+1 formalism, we split spacetime using the line element
ds? = —N2dt? + @ g, (da® — N'dt)(da’ — Ndt),

with lapse function N(t,,?), shift vector N'(t,,z’) and the three-metric *)g;;(z%) on
constant time spacelike hypersurfaces 3. (Latin indices vary over 1,2,3.)

The four-vector n# = %(1, N%) is normal to ¥ and defines the extrinsic curvature

K;; = —n;;; . Show that the extrinsic curvature can be expressed as
L /s
Kij=-55 (( Ygij.0 + Nijj + Nj\i) )

where | denotes the covariant derivative in ¥ and you may assume that the connection is
deﬁned by F/j)\ = %gun (gl/m,)\ + g)\n,u - gt/)\,n)-

(ii) When linearising the 341 metric about a flat FRW universe, we define the
scalar perturbations by

N(t,.l?z) = N(t)(]. + (I)(t,xl)) ) Nz = —CLQB’i y (3)gij = GQ[(l — 2\1’)5” — 2E,ij] y

p=p+d0pand P = P+ P, where bars denote background homogeneous quantities. In
synchronous gauge, we take ® = 0 and B = 0. Given that metric perturbations transform
as
5§,uu = 59;11/ - g,uu,(]fo - g)\ufi\t - gukf,}\y
(t, @') — (I, &) = (t+&°, 2* + &), (€=d'N),
show that there is a residual gauge freedom in synchronous gauge given by the coordinate
transformation,

C(x , N ,
0 = 5\7)’ )\:C(xl)/azdt—i-D(:cz),

where C' and D are arbitrary functions of z¢ only.

In longitudinal Newtonian gauge we take instead £ = B = 0. Find a transfor-
mation law that expresses the density perturbation dp/p in Newtonian gauge in terms of
synchronous gauge quantitites.

(iii) Prove that the quantity

1 dp

3p+P

is gauge-invariant. Show that ¢ is independent of time on superhorizon scales, that is,

¢ = 0 for k <« aH. Briefly discuss the importance of the perturbation variable ¢ in
inflationary scenarios.

(=—U+

[Hint: You may assume a definite equation of state P = wp, that the perturbed energy
density conservation equation is

op/N = —3H(5p + 0P) + (5 + P)(k — 3H®) — Au,

and that the metric perturbation W satisfies \P/N =-—Hd+ %n—i— éAX , where A = V2 /a2,
u generates the scalar velocity perturbation, and s and x generate the trace and traceless
part of K;; respectively. ]
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2 In a flat FRW universe (2 = 1), in synchronous gauge (specifying metric pertur-
bations with h®* = 0), the perturbations of a multicomponent fluid obey the following
evolution equations

oy + (L +wn)ik-vy + 3(1+wy)h' =0,
/

a

YN ikén =0,

L+ wy (1)

" a’, !/ a/ 2
W'+ —h +3<a> %:(14—311)1\;)(21\;51\, =0,
where éy is the density perturbation, 2y is the fractional density, vy is the velocity
and Py = wypn is the equation of state of the Nth fluid component, and k is the
comoving wavevector (k = |k|), h is the trace of the metric perturbation and primes
denote differentiation with respect to conformal time 7 (dr = dt/a).

(i) Suppose that the universe is composed of two components, (comoving) cold
dark matter pc with no pressure (Pc = 0) and a radiation fluid pr with equation of state
Pr = pr/3. Show that the coupled matter-radiation equations arising from (}) become

/

3 (a'\?
4 20~ 3 (%) (0o +20mbe) =0,

1 4

o+ §k25 R~ 3

Consider times well before equal matter-radiation (i.e. 7 < 7eq when pgr = p¢), to find

approximate growing mode solutions for matter and radiation density perturbations which
are initially adiabatic:

5 = 0.

S = AT? = Z&R, for 7 < 27/k,

bc ~Blnt, &g~ Ccos(kr/V3)+ Dsin(kr/V3), for 7> 2r/k,

where A, B,C,D are functions of the wavevector k only. Briefly comment on the
implications of these solutions for large-scale structure formation.

(ii) Now consider another flat FRW model in which the late universe is dominated
by a non-relativistic fluid component p,, well after matter-radiation equality at teq. With
the non-relativistic pressure satisfying P,,, = Wy pm < pm (wm, const.), use the evolution
equations (t) to derive the perturbation equation for d,,:

O + 2%5m - [47TGﬁm — c§k2/a2] Om =0, (1)

where the sound speed is ¢2 = dP/dp, here with w,, = ¢2, and dots denote differentiation
with respect to cosmic time t.

Assume that this perturbation equation (1) is also valid for a polytropic fluid with
an equation of state P,, x pi{?’, that is, for a non-constant sound speed c2. Find explicit
growing and decaying solutions for the density perturbation d,, in the matter era t > tqq.
Define the Jeans length Aj for this fluid and use it to interpret the behaviour of your

growing mode solution in different wavelength regimes.

aper
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3 (i) Consider a photon with four-momentum p# (p,p"* = 0) propagating in a
perturbed FRW universe (flat €2 = 1) with line element

ds* = a*(7) [—dr? + (8;5 + hij)dz'da’] |

where k is the comoving wavenumber and ki =k /|k|. A comoving observer with four-
velocity u* = a71(1, 0, 0, 0) measures the photon energy to be E = —u,p" = ap’ = q/a
where ¢ is the comoving momentum. Use the geodesic equation % +TH p”p” = 0 to
show that along a photon trajectory in (unit) direction n* we have to linear order

dg dn’

_1 - h/ AZ

dr q dr
[Hint: You may assume that T'J, = %, ry, = 0, F?j = %(5”» + hij) + 2Rl Féj =

2'%g>
&0 + 2h;j and sz 3 (hw K+ hikg — Pjki).]

= O(hij) .

(ii) Assume that the photon brightness function A(xz?, 7%, 7) = 4AT/T satisfies the
collisionless Boltzmann equation which in Fourier space is given by

A +ikpA = —2h00'0) = =3 [$h' + L(3u* — 1)hY] , (%)

where p = k-n and h and hs are the scalar trace and anisotropic scalar metric perturbations
respectively.

Argue that if the photon fluid is in equilibrium for 7 < 7., we may approximate
its initial conditions at photon decoupling by

A(k, I, Tdec) = 57(7—dec) +4n - V(Tdec) ,
that is, briefly justify why the higher order moments Ay ~ 0 (¢ > 2) can be neglected.

Hence, assuming instantaneous decoupling, integrate (x) from decoupling 7gec to
today 79 to find the Sachs-Wolfe formula for the CMB temperature anisotropy seen at
position x in a direction n:

AT 1 1 [70
S ) = 100 (o) + 1 Viraee) — 5 [l i )
T 4 ! 2 Tdec

Explain the meaning of each term in the formula (}), and describe the length scales on
which these contributions are important.

(iii) In Fourier space, integrate the Sachs-Wolfe formula (1) by parts (using the
right hand side of (x)) to bring it to the following form:

AT

1 3 h )
T(kv MaTO) = |:5 Z,U(s/ ZM (h h/) — S:| 67”6“(7—077—‘1“)

4k 7 2k 5 2k2

1 T0 ) 1 h///
- dr e*nT=mo) | Z(p/ —ply — S|
Q/T Te [6( o) 2k2]

dec

You may assume the equation for the photon density perturbation ¢/ + 4ik-v+ 2k’ = 0.
¥y T3 3

END OF PAPER
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