

MATHEMATICAL TRIPOS Part III

Monday 12 June, 2006 9 to 11

PAPER 55

ADVANCED COSMOLOGY

Attempt **TWO** questions. There are **THREE** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1 In synchronous gauge (with metric perturbations $h^{0\mu} = 0$ about a flat FRW universe with $\Omega_{\text{tot}} = 1$), linear perturbations of a multicomponent fluid obey the following evolution equations

$$\delta'_{N} + (1+w_{N})i\mathbf{k} \cdot \mathbf{v}_{N} + \frac{1}{2}(1+w_{N})h' = 0,$$

$$\mathbf{v}'_{N} + (1-3w_{N})\frac{a'}{a}\mathbf{v}_{N} + \frac{w_{N}}{1+w_{N}}i\mathbf{k}\delta_{N} = 0,$$

$$h'' + \frac{a'}{a}h' + 3\left(\frac{a'}{a}\right)^{2}\sum_{N}(1+3w_{N})\Omega_{N}\delta_{N} = 0,$$

(†)

where δ_N is the density perturbation, Ω_N is the fractional density, \mathbf{v}_N is the velocity and $P_N = w_N \rho_N$ is the equation of state of the Nth fluid component, and \mathbf{k} is the comoving wavevector ($k = |\mathbf{k}|$), h is the trace of the metric perturbation and primes denote differentiation with respect to conformal time τ ($d\tau = dt/a$).

(i) Assume that the late universe $(t > t_{eq})$ is filled with two components, (a) comoving non-relativistic matter (cold dark matter) $\rho_{\rm C}$ with no pressure $(P_C = 0)$ and (b) a gas of randomly-oriented cosmic strings ρ_S with an average equation of state $P_S = -\rho_S/3$. Show that the cold dark matter-string gas equations arising from (†) become

$$\delta_C'' + \frac{a'}{a}\delta_C' - \frac{3}{2}\left(\frac{a'}{a}\right)^2 \Omega_C \delta_C = 0,$$

$$\delta_S'' + 2\frac{a'}{a}\left(\delta_S' - \frac{1}{3}\delta_C'\right) - \frac{1}{3}k^2\delta_S - \left(\frac{a'}{a}\right)^2 \Omega_C \delta_C = 0.$$

(ii) By considering a new time variable, $\eta \equiv \rho_S/\rho_C$, show that the dynamical equation for the cold dark matter perturbation δ_C can be re-expressed as

$$\frac{d^2 \delta_C}{d\eta^2} + \frac{3+4\eta}{2\eta(1+\eta)} \frac{d\delta_C}{d\eta} - \frac{3}{2\eta^2(1+\eta)} \delta_C = 0.$$
 (*)

[*Hint:* Recall that
$$\left(\frac{a'}{a}\right)^2 = \frac{8\pi G}{3}\rho_{\text{tot}}a^2$$
, $\frac{a''}{a} - \left(\frac{a'}{a}\right)^2 = -\frac{4\pi G}{3}(\rho_{\text{tot}} + P_{\text{tot}})a^2$,
 $\rho'_N + 3\frac{a'}{a}(\rho_N + P_N) = 0$.]

(iii) Consider early times $\eta \ll 1$ when the cold dark matter dominated over the string component and seek a power series solution of (*) of the form $\delta_{\rm C} = a_0 \eta^{\alpha} + a_1 \eta^{\alpha+1} + \dots$ Hence or otherwise show that there is an approximate growing mode solution of the form

$$\delta_C \approx A_{\mathbf{k}} \eta \left(1 - \frac{4}{7}\eta\right), \qquad (\eta \ll 1).$$

Compare this to the expected growth rate for cold dark matter perturbations in a matter dominated universe.

(iv) Define the Jeans' length $\lambda_{\rm J}$. Now consider solving the cold dark matter–string gas equations in the opposite asymptotic limit $\eta \gg 1$. Show that the cold dark matter perturbation is approximately frozen, $\delta_C \approx \text{const.}$ Draw a qualitative diagram of the cold

Paper 55

dark matter transfer function T(k) for wavenumbers coming inside the horizon after the time of matter-radiation equality, $t > t_{eq}$. What is the analogue here of the adiabatic initial condition for radiation $\delta_R = \frac{4}{3}\delta_C$ when $k \ll aH$? Briefly discuss the apparent qualitative behaviour of the string perturbations δ_S on both superhorizon and subhorizon scales.

4

2 (i) Consider a photon with four-momentum p^{μ} $(p_{\mu}p^{\mu} = 0)$ propagating in a perturbed FRW universe (flat $\Omega = 1$) with line element

$$ds^2 = a^2(\tau) \left[-d\tau^2 + (\delta_{ij} + h_{ij}) dx^i dx^j \right]$$

where **k** is the comoving wavevector and $\hat{k}^i = k^i/|\mathbf{k}|$. A comoving observer with fourvelocity $u^{\mu} = a^{-1}(1, 0, 0, 0)$ measures the photon energy to be $E = -u_{\mu}p^{\mu} = ap^0 \equiv q/a$ where q is the comoving momentum. Use the geodesic equation $\frac{dp^{\mu}}{d\lambda} + \Gamma^{\mu}_{\nu\sigma}p^{\nu}p^{\sigma} = 0$ to show that for a photon trajectory along (unit) direction \hat{n}^i we have to linear order

$$\frac{dq}{d\tau} = -\frac{1}{2}qh'_{ij}\hat{n}^i\hat{n}^j, \qquad \qquad \frac{d\hat{n}^i}{d\tau} = \mathcal{O}(h_{ij}).$$

[*Hint:* You may assume that $\Gamma_{00}^0 = \frac{a'}{a}$, $\Gamma_{0i}^0 = 0$, $\Gamma_{ij}^0 = \frac{a'}{a}(\delta_{ij} + h_{ij}) + \frac{1}{2}h'_{ij}$, $\Gamma_{0j}^i = \frac{a'}{a}\delta_{ij} + \frac{1}{2}h'_{ij}$ and $\Gamma_{jk}^i = \frac{1}{2}(h_{ij,k} + h_{ik,j} - h_{jk,i})$.]

(ii) The photon distribution function $f(\mathbf{x}, \mathbf{p}, \tau)$ can be expanded about the Planck spectrum $f_0(p, \tau) = f_0(q)$ as

$$f(\mathbf{x}, \mathbf{p}, \tau) = f_0(q) + f_1(\mathbf{x}, q, \hat{\mathbf{n}}, \tau) ,$$

where the photon momentum $p \equiv q/a$. Show that the collisionless Boltzmann equation

$$\frac{df}{d\lambda} \equiv \frac{dx^{\mu}}{d\lambda} \frac{\partial f}{\partial x^{\mu}} + \frac{dp^{\mu}}{d\lambda} \frac{\partial f}{\partial p^{\mu}} = 0$$

can be re-expressed in the form

$$\frac{\partial f_1}{\partial \tau} + \hat{n}^i \frac{\partial f_1}{\partial x^i} + \frac{dq}{d\tau} \frac{df_0}{dq} + \frac{dq}{d\tau} \frac{\partial f_1}{\partial q} + \frac{d\hat{n}^i}{d\tau} \frac{\partial f_1}{\partial \hat{n}^i} = 0 \,,$$

which, using the results from part (i), at linear order reduces to

$$\frac{\partial f_1}{\partial \tau} + ik\mu f_1 = \frac{1}{2} \frac{df_0}{dq} h'_{ij} \hat{n}^i \hat{n}^j ,$$

where $\mu = \hat{\mathbf{k}} \cdot \hat{\mathbf{n}}$. Finally, given that ρ_{γ} is the background photon density, argue that the brightness function

$$\Delta(\mathbf{x}, \hat{\mathbf{n}}, \tau) \equiv 4 \frac{\Delta T}{T} \equiv \frac{4\pi}{a^4 \rho_\gamma} \int q f_1 q^2 dq$$

must therefore satisfy

$$\Delta' + ik\mu\Delta = -2h'_{ij}\hat{n}^i\hat{n}^j.$$
^(‡)

(iii) Assume recombination occurs instantaneously at photon decoupling ($\tau = \tau_{dec}$) with the brightness function given in Fourier space by only the two lowest moments,

$$\Delta(\mathbf{k}, \mu, \tau_{\rm dec}) = \delta_{\gamma}(\mathbf{k}, t_{\rm dec}) + 4\hat{\mathbf{n}} \cdot \mathbf{v}(\mathbf{k}, t_{\rm dec}) \,,$$

where δ_{γ} is the photon density perturbation and **v** is the average fluid velocity. Briefly describe the important physical mechanisms which make this a poor approximation on small angular scales (with multipole $\ell < 200$). Use this assumption and eqn (‡) to derive the Sachs-Wolfe equation in real space for the temperature fluctuation in a direction $\hat{\mathbf{n}}$:

$$\frac{\Delta T}{T}(\mathbf{x}_0, \,\hat{\mathbf{n}}, \,\tau_0) = \frac{1}{4} \delta_{\gamma}(\mathbf{x}, \tau_{\text{dec}}) + \hat{\mathbf{n}} \cdot \mathbf{v}(\mathbf{x}, \,\tau_{\text{dec}}) - \frac{1}{2} \int_{\tau_{\text{dec}}}^{\tau_0} h'_{ij} \hat{n}^i \hat{n}^j d\tau$$

Paper 55

5

3 In the 3+1 formalism, we split spacetime using the line element

$$ds^{2} = -N^{2}dt^{2} + {}^{(3)}g_{ij}(dx^{i} - N^{i}dt)(dx^{j} - N^{j}dt)$$

with lapse function $N(t, x^i)$, shift vector $N^i(t, x^i)$ and ${}^{(3)}g_{ij}(x^i)$ the three-metric on constant time spacelike hypersurfaces Σ . The vector $n^{\mu} = \frac{1}{N}(1, N^i)$ is normal to Σ and defines the extrinsic curvature through

$$K_{ij} \equiv -n_{i;j} = -\frac{1}{2N} \left({}^{(3)}g_{ij,0} + N_{i|j} + N_{j|i} \right) \,,$$

where | denotes the covariant derivative in Σ .

(i) Consider the conformal 3-metric

$$({}^{(3)}\tilde{g}_{ij} = ({}^{(3)}g)^{-1/3} \, {}^{(3)}g_{ij}$$

where ${}^{(3)}g = \det({}^{(3)}g_{ij})$ and, hence or otherwise, take the trace of the extrinsic curvature expression to find

$$K \equiv {}^{(3)}g^{ij}K_{ij} = -\frac{1}{2N} \left[\frac{}{}^{(3)}g^{ij} - 2N^{i}_{|i|} \right] \,.$$

In the context of an expanding universe (setting $N^i = 0$), argue that -K/3 can be interpreted as a locally defined Hubble parameter $H(t, x^i)$. [*Hint:* You may assume that $\text{Tr}(A^{-1}dA/dt) = d(\ln(\det A))/dt$ for any matrix A with non-vanishing determinant.]

(ii) When linearising the 3+1 metric about a flat FRW universe, we define the scalar perturbations by

$$N(t,x^{i}) \equiv \bar{N}(t)(1 + \Phi(t,x^{i})), \qquad N_{i} \equiv -a^{2}B_{,i}, \qquad {}^{(3)}g_{ij} = a^{2}(t)[(1 - 2\Psi)\delta_{ij} - 2E_{,ij}],$$

and also $\rho = \bar{\rho} + \delta \rho$ and $P = \bar{P} + \delta P$, where bars denote background homogeneous quantities. In synchronous gauge, we take $\Phi = 0$ and B = 0. Given that metric perturbations transform as

$$\delta \tilde{g}_{\alpha\beta} = \delta g_{\alpha\beta} - \bar{g}_{\alpha\beta,\gamma} \xi^{\gamma} - \bar{g}_{\gamma\beta} \xi^{\gamma}_{,\alpha} - \bar{g}_{\alpha\gamma} \xi^{\gamma}_{,\beta} \quad \text{under} \quad (t, \ x^{i}) \longrightarrow (\tilde{t}, \ \tilde{x}^{i}) = (t + \xi^{0}, \ x^{i} + \xi^{i}) \,,$$

where $\xi^i \equiv \partial^i \lambda$, show that there is a residual gauge freedom in synchronous gauge given by the coordinate transformation,

$$\xi^0 = \frac{C(x^i)}{\bar{N}}, \qquad \lambda = C(x^i) \int \frac{\bar{N}}{a^2} dt + D(x^i),$$

where C and D are arbitrary functions of x^i only. Briefly discuss the significance of this gauge freedom during (a) inflation and (b) the standard hot big bang. In longitudinal Newtonian gauge we take instead E = B = 0. Find a transformation law that expresses the density perturbation $\delta \rho / \rho$ in Newtonian gauge in terms of synchronous gauge quantities.

(iii) Show that the quantity

$$\zeta = \Psi - \frac{1}{3} \frac{\delta \rho}{\bar{\rho} + \bar{P}} \,,$$

Paper 55

[TURN OVER

6

is gauge-invariant and that it is independent of time on superhorizon scales, that is, $\dot{\zeta} = 0$ for $k \ll aH$.

[*Hint:* You may assume a definite equation of state $P = w\rho$, that the perturbed energy density conservation equation is

$$\dot{\delta\rho}/\bar{N} = -3H(\delta\rho + \delta P) + (\bar{\rho} + \bar{P})(\kappa - 3H\Phi) - \Delta u$$

and that the metric perturbation Ψ satisfies $\dot{\Psi}/\bar{N} = -H\Phi + \frac{1}{3}\kappa + \frac{1}{3}\Delta\chi$, where $\Delta \equiv \nabla^2/a^2$, u generates the scalar velocity perturbation, and κ and χ generate the trace and traceless part of K_{ij} respectively.

END OF PAPER