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ADVANCED COSMOLOGY

Attempt THREE questions.

There are six questions in total.

The questions carry equal weight.

You may not start to read the questions

printed on the subsequent pages until

instructed to do so by the Invigilator.
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1 In the 3+1 formalism for General Relativity, one selects a set of spacelike surfaces
Σ3 which foliate spacetime, with a timelike normal nµ normalised so that nµnνgµν = −1.
The projection operator onto the tangent space of Σ3 is Pµ

ν = δµ
ν +nµnν , and the extrinsic

curvature of Σ3 is Kαβ = Pµ
α∇µnβ ∈ Σ3, where ∇µ is the four dimensional covariant

derivative. The three dimensional covariant derivative Dµ is given by applying ∇µ and
then projecting all tensor indices into Σ3 using Pµ

ν .

(a) Show that Pµ
α Pα

δ = Pµ
δ , and Pµ

α nµ = 0.

(b) Show that Pα
µ P β

ν ∇αP ε
β = Kµνnε.

(c) From the identity

DµDνWγ −DνDµWγ = Wλ
(3)Rλ

γνµ, (∗)

for any Wγ ∈ Σ3 i.e. Wγnγ = 0, show that

(3)Rλ
γνµ = Pλ

ξ Pα
µ P β

ν P δ
γ

(4)Rξ
δβα −KµγKλ

ν + KνγKλ
µ .

You may assume Kµν is symmetric. [Hint: express the left hand side of (∗) in four
dimensional terms.]
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2 Consider a massless scalar field φ in a contracting, flat FRW universe.

(a) Assuming the background field φ0(τ) is spatially homogeneous, show that

a(τ) = (−τ)1/2, φ0(τ) =
√

3/2 ln(−τ), −∞ < τ < 0 ,

where τ is the conformal time, solves the Friedmann equation and the scalar field equation
in units where 8πG = 1.

(b) In conformal Newtonian gauge, the perturbed metric is

ds2 = a2(τ)[−(1 + 2Φ)dτ2 + (1− 2Ψ)d~x2]

(for scalar perturbations). The scalar field is φ = φ0(τ) + δφ. Show that the perturbed
stress-energy tensor has components

a2T 0
0 = −1

2
φ′2

0 − φ′
0δφ

′ + φ′2
0 Φ

a2T 0
i = −[φ′

0δφ,i] ,

to linear order in the perturbations, where primes denote derivatives with respect to τ .

(c) The perturbed Einstein equations read

2[−3H(HΦ + Ψ′) + ∇2Ψ] = −φ′2
0 Φ + φ′

0δφ
′ (1)

2(HΦ + Ψ′) = φ′
0δφ (2)

where H = a′/a and Φ = Ψ since there is no anisotropic stress to linear order.

Show that these equations and the background equations imply that

Φ′′ + 6
a′

a
Φ′ −∇2Φ = 0 (3)

(d) Writing Φ =
∑

k Φk(τ)eik·x and similarly for δφ, show first that (3) has the
positive frequency solution

Φk(τ) ∼ 1
a3

e−ikτ , kτ → −∞ ,

and that (1) and (2) are consistent with this as long as

δφk(τ) ∼ 1
a
e−ikτ , kτ → −∞ .

(e) If δφk ∼ 1
a

√
~
2ke−ikτ is the correctly normalised positive frequency incoming

mode as kτ → −∞, calculate the spectral index of 〈|Φk|2〉 (i.e. the power of k) as τ → 0.

Paper 59 [TURN OVER



4

3 In a flat FRW universe (Ω = 1), in synchronous gauge (specifying metric pertur-
bations with h0µ = 0), the perturbations of a multicomponent fluid obey the following
evolution equations

δ′N + (1 + wN )ik · vN + 1
2 (1 + wN )h′ = 0 ,

v′
N + (1− 3wN )

a′

a
vN +

wN

1 + wN
ikδN = 0 ,

h′′ +
a′

a
h′ + 3

(
a′

a

)2 ∑
N

(1 + 3wN )ΩNδN = 0 ,

(†)

where δN is the density perturbation, ΩN is the fractional density, vN is the velocity
and PN = wNρN is the equation of state of the Nth fluid component, and k is the
comoving wavevector (k = |k|), h is the trace of the metric perturbation and primes
denote differentiation with respect to conformal time τ (dτ = dt/a).

(a) Suppose that the universe is composed of two components, (comoving) cold
dark matter ρC with no pressure (PC = 0) and a radiation fluid ρR with equation of state
PR = ρR/3. Show that the coupled matter-radiation equations arising from (†) become

δ′′C +
a′

a
δ′C −

3
2

(
a′

a

)2

(ΩCδC + 2ΩRδR) = 0 ,

δ′′R +
1
3
k2δR −

4
3
δ′′C = 0 .

Consider times well before equal matter-radiation (i.e. τ � τeq when ρR = ρC), to find
approximate growing mode solutions for both matter and radiation density perturbations
which are initially adiabatic (δR = 4

3δC) in the limits τ � 2π/k and τ � 2π/k.

(b) Now consider the late universe filled with cold dark matter and a small baryonic
component with PB = c2

sρB (cs<<1), that is, at times τ � τeq when ΩC+ΩB ≈ 1 (ignoring
radiation and Λ). By making appropriate approximations, show that the evolution
equations (†) can be reduced to

δ′′C +
a′

a
δ′C −

3
2

(
a′

a

)2

(ΩCδC + ΩBδB) = 0 ,

δ′′B +
a′

a
δ′B −

[
3
2

(
a′

a

)2

(ΩCδC + ΩBδB)− c2
sk

2δB

]
= 0 .

For a small baryon density (ΩB<<ΩC) and initially adiabatic perturbations, show that
baryonic structures can only grow on physical wavelengths greater than,

λJ ≈ cs

(
π

Gρ̄C

)1/2

,

where ρ̄C is the homogeneous cold dark matter density. Qualitatively describe the
evolution of large-scale baryonic perturbations in the matter era (τ > τeq), given that
cs ≈ 1/

√
3 prior to photon decoupling (τ < τdec) and cs ≈ 10−5(T/Tdec) afterwards

(τ > τdec).
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4 In an expanding universe we can expand the photon distribution function f(x,p, τ)
about the Planck spectrum f0(p, τ) = f0(q) as

f(x,p, τ) = f0(q) + f1(x, q, n̂, τ) ,

where the comoving momentum q ≡ ap with p = |p| and the photon propagation direction
is n̂ = p/p. The collisionless Boltzmann equation df/dλ = 0 then can be expressed as

∂f1

∂τ
+ n̂i ∂f1

∂xi
+

dq

dτ

df0

dq
+

dq

dτ

∂f1

∂q
+

dni

dτ

∂f1

∂n̂i
= 0 . (∗)

(a) Consider photon propagation in synchronous gauge,

ds2 = a2(τ)
[
−dτ2 + (δij + hij)dxidxj

]
,

to show that the photon comoving momentum q must obey
dq

dτ
= −1

2
qh′

ij n̂
in̂j ,

where primes denote derivatives with respect to τ . [Hint: Use the geodesic equation
dp0

dλ + Γ0
νσpνpσ = 0 for which you may assume that Γ0

00 = a′

a , Γ0
0i = 0 and Γ0

ij =
a′

a (δij + hij) + 1
2h′

ij .]

Use this result to show that (∗) in Fourier space can be re-expressed as
∂f1

∂τ
+ ikµf1 =

1
2
q
df0

dq
h′

ij n̂
in̂j , (‡)

where µ ≡ k̂ · n̂ with the wavevector direction k̂ = k/k and magnitude k = |k|. Briefly
explain why the last two terms in (∗) have been neglected.

(b) Consider the ansatz in which we express perturbations in the distribution
function f(x,p, τ) by deviations of the temperature T (k, n̂, τ) about the mean temperature
T̄ (τ) ∝ a−1 in the Planck spectrum. Show that

f(x,p, τ) ≡ f0

(
T̄ (τ)q

T (k, n̂, τ)

)
≈ f0(q)− q

df0

dq

∆T

T
(k, n̂, τ) .

Defining the brightness function by ∆(k, n̂, τ) = 4∆T
T , integrate out the q-dependence in

(‡) to show that
∆′ + ikµ∆ = −2h′

ij n̂
in̂j . (∗∗)

It is usual to solve for ∆ in (∗∗) using a moment expansion in the parameter µ;
however, prior to decoupling while the photons are very close to equilibrium, explain why
we need only consider the first two terms in that expansion.

(c) The solution today at τ0 of (∗∗) can be expressed in terms of the initial conditions
at photon decoupling τdec and a line integral over the metric perturbations (you need not
derive this result):

∆T

T
(x, n̂, τ0) =

1
4
δγ(x, τdec) + n̂ · vγ(x, τdec)−

1
2

∫ τ0

τdec

h′
ij n̂

in̂jdτ .

Briefly discuss the physical origin of each of these three terms and the angular scales on
which they are typically important. Sketch a diagram illustrating their contributions to
the angular power spectrum.
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5 Consider the spacetime

ds2 = − cosh2 t dt2 + dx2.

(a) Show that the timelike geodesics emanating from t = 0, x = 0 are periodic and
describe their behaviour physically.

[Hint: You may find the following integral useful:∫ π

0

dz

1 + A sin2 z
=

π√
1 + A

.

]

(b) By means of an appropriate conformal transformation, describe the causal
structure of this spacetime.

(c) Is the spacetime globally hyperbolic? Justify your answer and describe its
physical consequences.

6 (a) Consider a static hyperbolic spacetime described by the metric

ds2 = −dt2 + dξ2 + R2 sinh2[ξ/R](dθ2 + sin θdφ2) ,

where the length R characterizes the scale of the spatial curvature of the constant time
slices.

We shall consider how classical electrodynamics in this spacetime is altered by the
presence of spatial curvature. You may assume that Gauss’s law remains valid. Compute
the electric field of a point charge as a function of distance R.

(b) Consider a massless scalar field φ(x) in the Kaluza-Klein spacetime

ds2 = −dt2 + dx2 + dy2 + dz2 + dw2

where w = 0 and w = R are identified by means of periodic boundary conditions.

Express the retarded propagator for the field φ(x), G(x,x′) satisfying

�G(x,x′) = (∂2
t −∇2 − ∂2

w)G(x,x′) = δ5(x− x′)

as a sum and/or integral in momentum space, where

δ5(x− x) = δ(x− x′)δ(y − y′)δ(z − z′)δ(w − w′)δ(t− t′) .

(c) Explain how G(x,x′) at w = w′ may be interpreted as an infinite tower of
species of Kaluza-Klein excitations of differing mass.

(d) Discuss the limits where |x − x′|, |t − t′| � R and |x − x′|, |t − t′| � R when
w = w′ as well as the physical interpretation of these two limiting cases.
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