

MATHEMATICAL TRIPOS Part III

Wednesday 7 June, 2006 1.30 to 4.30

PAPER 10

ADVANCED COMPLEX VARIABLE

Attempt **four** questions. There are **six** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. 2

1 Define a normal family. Show that the family of analytic functions $f : \Omega \to \mathbb{D}$ from a plane domain Ω into the unit disc \mathbb{D} is a normal family.

Let $g: H = \{x + iy : y > 0\} \to \mathbb{D}$ be an analytic function. Suppose that

$$g(iy) \to \ell$$
 as $y \searrow 0$

for some finite limit ℓ . Show that the family of maps $z \mapsto g(z/n)$ form a normal family and deduce that $g(z) \to \ell$ as $z \to 0$ non-tangentially.

Give an example to show that we need not have $g(z) \to \ell$ as $z \to 0$, where g is as in the previous paragraph.

2 Let Ω be a plane domain and (z_n) a discrete set of points in Ω . Prove that there is an analytic function $f: \Omega \to \mathbb{C}$ which has zeros at the points (z_n) and no other zeros.

Let q be a complex number with |q|>1. For which values of $z\in\mathbb{C}$ does the infinite product

$$\sigma(z) = \prod_{k=0}^{\infty} (1 - q^{-2k-1}z)(1 - q^{-2k-1}z^{-1})$$

converge? Where are the zeros of σ ? Prove that

$$\sigma(qz) = -z\sigma(q^{-1}z)$$

wherever both sides are defined.

3 Explain briefly how $\mathbb{P} \setminus \{0, 1, \infty\}$ can be regarded as a quotient of the upper halfplane by a group of conformal maps that acts discontinuously. Explain how this leads to a hyperbolic metric on $\mathbb{P} \setminus \{0, 1, \infty\}$.

Prove the Schwarz – Pick lemma and deduce that any analytic function $f : \mathbb{D} \setminus \{0\} \to \mathbb{P} \setminus \{0, 1, \infty\}$ is a contraction for the hyperbolic metric. Is it ever the case that the hyperbolic distance between two distinct points $z_0, z_1 \in \mathbb{D} \setminus \{0\}$ is equal to the hyperbolic distance between $f(z_0)$ and $f(z_1)$?

Paper 10

3

4 Let K be a compact subset of the plane domain Ω and let $\mathcal{O}(\Omega)$ be the vector space of all analytic functions $f: \Omega \to \mathbb{C}$. Define the *holomorphic hull* \hat{K} of K in Ω .

State and prove Runge's Theorem.

Prove that, for any point $w \in \Omega$, we have

 $w \in \widehat{K}$

if, and only if,

$$|f(w)| \leq \sup\{|f(z)| : z \in K\}$$
 for all $f \in \mathcal{O}(\Omega)$.

5 Let $\phi : \mathbb{T} \to \mathbb{C}$ be a continuous function on the unit circle and let *m* denote the Lebesgue measure on \mathbb{T} normalised so $m(\mathbb{T}) = 1$. Show that the Poisson integral

$$P\phi: z \to \int_{\mathbb{T}} \operatorname{Re}\left(\frac{\omega+z}{\omega-z}\right) \phi(\omega) \ dm(\omega)$$

defines a harmonic function on the unit disc with $P\phi(z) \to \phi(\omega)$ as $z \to \omega \in \mathbb{T}$.

The Cauchy transform of ϕ is the function

$$\Phi: \mathbb{C} \setminus \mathbb{T} \to \mathbb{C} ; \ w \mapsto \frac{1}{2\pi i} \int_{\mathbb{T}} \frac{\phi(z)}{z - w} dz .$$

Show that this defines an analytic function on $\mathbb{C} \setminus \mathbb{T}$. Deduce that the jump in Φ across the unit circle is given by ϕ in the sense that

$$\Phi(r\omega) - \Phi(r^{-1}\omega) \to \phi(\omega)$$
 as $r \searrow 1$

for each ω with $|\omega| = 1$.

6 Define the Hardy–Littlewood maximal function and prove the maximal inequality.

Let f be a Lebesgue integrable function on the unit circle. Prove that, for Lebesgue almost every point $\omega \in \mathbb{T}$, we have

$$\frac{1}{m(I)} \int_{I} f \ dm \to f(\omega)$$

as the interval I, centred on ω , shrinks to $\{\omega\}$.

Show that the function f need not have such a limit at every point of the unit circle.

END OF PAPER

Paper 10