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1 Define a normal family. Show that the family of analytic functions f : Ω → D from
a plane domain Ω into the unit disc D is a normal family.

Let g : H = {x + iy : y > 0} → D be an analytic function. Suppose that

g(iy) → ` as y ↘ 0

for some finite limit `. Show that the family of maps z 7→ g(z/n) form a normal family
and deduce that g(z) → ` as z → 0 non-tangentially.

Give an example to show that we need not have g(z) → ` as z → 0, where g is as
in the previous paragraph.

2 Let Ω be a plane domain and (zn) a discrete set of points in Ω. Prove that there is
an analytic function f : Ω → C which has zeros at the points (zn) and no other zeros.

Let q be a complex number with |q| > 1. For which values of z ∈ C does the infinite
product

σ(z) =
∞∏

k=0

(1− q−2k−1z)(1− q−2k−1z−1)

converge? Where are the zeros of σ? Prove that

σ(qz) = −zσ(q−1z)

wherever both sides are defined.

3 Explain briefly how P \ {0, 1,∞} can be regarded as a quotient of the upper half-
plane by a group of conformal maps that acts discontinuously. Explain how this leads to
a hyperbolic metric on P \ {0, 1,∞}.

Prove the Schwarz – Pick lemma and deduce that any analytic function f : D\{0} →
P\{0, 1,∞} is a contraction for the hyperbolic metric. Is it ever the case that the hyperbolic
distance between two distinct points z0, z1 ∈ D \ {0} is equal to the hyperbolic distance
between f(z0) and f(z1)?
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4 Let K be a compact subset of the plane domain Ω and let O(Ω) be the vector space
of all analytic functions f : Ω → C. Define the holomorphic hull K̂ of K in Ω.

State and prove Runge’s Theorem.

Prove that, for any point w ∈ Ω, we have

w ∈ K̂

if, and only if,
|f(w)| 6 sup{|f(z)| : z ∈ K} for all f ∈ O(Ω) .

5 Let φ : T → C be a continuous function on the unit circle and let m denote the
Lebesgue measure on T normalised so m(T) = 1. Show that the Poisson integral

Pφ : z →
∫

T
Re

(
ω + z

ω − z

)
φ(ω) dm(ω)

defines a harmonic function on the unit disc with Pφ(z) → φ(ω) as z → ω ∈ T.

The Cauchy transform of φ is the function

Φ : C \ T → C ; w 7→ 1
2πi

∫
T

φ(z)
z − w

dz .

Show that this defines an analytic function on C \ T. Deduce that the jump in Φ across
the unit circle is given by φ in the sense that

Φ(rω)− Φ(r−1ω) → φ(ω) as r ↘ 1

for each ω with |ω| = 1.

6 Define the Hardy–Littlewood maximal function and prove the maximal inequality.

Let f be a Lebesgue integrable function on the unit circle. Prove that, for Lebesgue
almost every point ω ∈ T, we have

1
m(I)

∫
I

f dm → f(ω)

as the interval I, centred on ω, shrinks to {ω}.

Show that the function f need not have such a limit at every point of the unit
circle.
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