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1 Let S be the total amount claimed in a year on a portfolio of home insurance
policies, where the successive claim sizes X1, X2, . . . are independent identically distributed
positive integer-valued random variables, independent of the number N of claims that
arrive during the year. Let pn = P(N = n), n = 0, 1, 2, . . ., and assume that

pn =
(
a+

b

n

)
pn−1, n = 1, 2, . . . , (1)

for some known constants a and b. Assume that fk = P(X1 = k), k = 1, 2, . . ., are known,
and let gk = P(S = k), k = 0, 1, 2, . . .. Derive a recursion formula for the gk’s in terms of
a, b and the fk’s.

Show that if (1) is satisfied then a+ b > 0.

Assume that (1) is satisfied. Find the distribution of N in the following cases:

(a) a+ b = 0;

(b) a = 0 and b > 0;

(c) 0 < a < 1 and b = (m− 1)a for some positive integer m.

2 Describe what is meant by quota-share reinsurance, excess-of-loss reinsurance and
stop-loss reinsurance.

Claims arrive at a direct insurer in a Poisson process with rate λ per year. The
claim sizes X1, X2, . . . are independent identically distributed random variables with finite
mean µ and moment generating function MX(t), independent of the claim arrivals process.
Assume that the premium loading factor θ is positive and that the direct insurer’s initial
capital is u > 0. Find the moment generating function MS(t) = E(eSt), where S is the
total amount claimed during one year. Find the moment generating function of the total
capital at the end of one year.

The direct insurer takes out a one-year quota-share reinsurance contract with
retained proportion α, 0 < α < 1. Write down the premium charged by the reinsurer
if the reinsurer’s premium loading factor is θR > 0. With this reinsurance contract, find
the moment generating function of the direct insurer’s total capital W at the end of one
year.

The direct insurer chooses the value of α to maximise E(g(W )) where g(w) =
−e−βW for a fixed positive constant β. If the original claims size X1, X2, . . . have an
exponential distribution with mean µ, find the optimal choice αopt of α. Discuss briefly
how αopt depends on (a) θR and (b) θ.
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3 In a classical risk model, the claims X1, X2, . . . have distribution function FX(x),
density fX(x), mean µ and moment generating function MX(r). The initial capital is
u > 0, and the safety loading θ is positive. Assume that there exists r∞, 0 < r∞ 6∞, such
that MX(r) increases to infinity as r tends to r∞ from the left, and that R, 0 < R < r∞,
satisfies

MX(R)− 1 = (1 + θ)µR.

Define the probability of ruin, ψ(u), with initial capital u. State the Lundberg inequality
and write down the Cramér–Lundberg approximation for ψ(u). Show that R satisfies
1
µ

∫∞
0
eRx(1− FX(x))dx = (1 + θ).

Suppose that FX satisfies 1 − FY (x) 6 1 − FX(x) for all x > 0, where FY is
the distribution function of a random variable Y with density fY (x) = (1 − FX(x))/µ;
in this case X1 is said to be new better than used in expectation (NBUE). Show that
E(eRY ) 6 E(eRX1), and hence show that

R >
θ

(1 + θ)µ
. (?)

Suppose that θ = 0.1 and that fX(x) = xe−x, x > 0. Find R. Show that X1 is NBUE
and verify that (?) holds.

4 Explain what is meant by a credibility estimate, a credibility factor and Bayesian
credibility.

A portfolio of life insurance policies has mi policies in year i, where mi > 1 and
mi is known, i = 1, 2, . . . , k + 1. Let Xi be the number of claims on the portfolio in
year i and assume that, given θ, the random variables X1, X2, . . . , Xk+1 are conditionally
independent with

P(Xi = x) =
(
mi

x

)
θx(1− θ)mi−x, x = 0, 1, . . . ,mi.

Suppose further that θ has prior density f(θ) ∝ θα−1(1 − θ)β−1, 0 < θ < 1, for known
positive α and β. Suppose that the numbers of claims x1, . . . , xk in years 1 to k are
observed and let µ(θ) = E(Xk+1 | θ).

Find the Bayesian estimate E(µ(θ) | X1 = x1, . . . , Xk = xk) of the expected number
of claims in year k + 1 under quadratic loss. Show that this estimate can be written as a
credibility estimate, and write down the credibility factor Z. Discuss the behaviour of Z
if

(a) k becomes large (with α and β fixed);

(b) α and β increase in such a way that α/(α+β) remains constant (and k is fixed).

[ Hint: If Y has density proportional to yα−1(1−y)β−1, 0 < y < 1, then E(Y ) = α
α+β

and var(Y) = αβ
(α+β+1)(α+β)2 .]
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