

MATHEMATICAL TRIPOS Part III

Tuesday 3 June 2008 9.00 to 11.00

PAPER 43

ACTUARIAL STATISTICS

Attempt no more than **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS Cover sheet

Cover sneet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. 1 Let S be the total amount claimed in a year on a portfolio of home insurance policies, where the successive claim sizes X_1, X_2, \ldots are independent identically distributed positive integer-valued random variables, independent of the number N of claims that arrive during the year. Let $p_n = \mathbb{P}(N = n), n = 0, 1, 2, \ldots$, and assume that

$$p_n = \left(a + \frac{b}{n}\right) p_{n-1}, \quad n = 1, 2, \dots,$$
(1)

for some known constants a and b. Assume that $f_k = \mathbb{P}(X_1 = k), k = 1, 2, ...,$ are known, and let $g_k = \mathbb{P}(S = k), k = 0, 1, 2, ...$ Derive a recursion formula for the g_k 's in terms of a, b and the f_k 's.

Show that if (1) is satisfied then $a + b \ge 0$.

Assume that (1) is satisfied. Find the distribution of N in the following cases:

- (a) a + b = 0;
- (b) a = 0 and b > 0;
- (c) 0 < a < 1 and b = (m-1)a for some positive integer m.

2 Describe what is meant by *quota-share reinsurance*, *excess-of-loss reinsurance* and *stop-loss reinsurance*.

Claims arrive at a direct insurer in a Poisson process with rate λ per year. The claim sizes X_1, X_2, \ldots are independent identically distributed random variables with finite mean μ and moment generating function $M_X(t)$, independent of the claim arrivals process. Assume that the premium loading factor θ is positive and that the direct insurer's initial capital is u > 0. Find the moment generating function $M_S(t) = \mathbb{E}(e^{St})$, where S is the total amount claimed during one year. Find the moment generating function of the total capital at the end of one year.

The direct insurer takes out a one-year quota-share reinsurance contract with retained proportion α , $0 < \alpha < 1$. Write down the premium charged by the reinsurer if the reinsurer's premium loading factor is $\theta_R > 0$. With this reinsurance contract, find the moment generating function of the direct insurer's total capital W at the end of one year.

The direct insurer chooses the value of α to maximise $\mathbb{E}(g(W))$ where $g(w) = -e^{-\beta W}$ for a fixed positive constant β . If the original claims size X_1, X_2, \ldots have an exponential distribution with mean μ , find the optimal choice α_{opt} of α . Discuss briefly how α_{opt} depends on (a) θ_R and (b) θ .

3 In a classical risk model, the claims X_1, X_2, \ldots have distribution function $F_X(x)$, density $f_X(x)$, mean μ and moment generating function $M_X(r)$. The initial capital is u > 0, and the safety loading θ is positive. Assume that there exists r_{∞} , $0 < r_{\infty} \leq \infty$, such that $M_X(r)$ increases to infinity as r tends to r_{∞} from the left, and that $R, 0 < R < r_{\infty}$, satisfies

$$M_X(R) - 1 = (1 + \theta)\mu R.$$

Define the probability of ruin, $\psi(u)$, with initial capital u. State the Lundberg inequality and write down the Cramér–Lundberg approximation for $\psi(u)$. Show that R satisfies $\frac{1}{u} \int_0^\infty e^{Rx} (1 - F_X(x)) dx = (1 + \theta).$

Suppose that F_X satisfies $1 - F_Y(x) \leq 1 - F_X(x)$ for all $x \geq 0$, where F_Y is the distribution function of a random variable Y with density $f_Y(x) = (1 - F_X(x))/\mu$; in this case X_1 is said to be *new better than used in expectation* (NBUE). Show that $\mathbb{E}(e^{RY}) \leq \mathbb{E}(e^{RX_1})$, and hence show that

$$R \geqslant \frac{\theta}{(1+\theta)\mu}.\tag{(\star)}$$

Suppose that $\theta = 0.1$ and that $f_X(x) = xe^{-x}$, x > 0. Find R. Show that X_1 is NBUE and verify that (\star) holds.

4 Explain what is meant by a *credibility estimate*, a *credibility factor* and *Bayesian credibility*.

A portfolio of life insurance policies has m_i policies in year i, where $m_i \ge 1$ and m_i is known, i = 1, 2, ..., k + 1. Let X_i be the number of claims on the portfolio in year i and assume that, given θ , the random variables $X_1, X_2, ..., X_{k+1}$ are conditionally independent with

$$\mathbb{P}(X_i = x) = \binom{m_i}{x} \theta^x (1-\theta)^{m_i - x}, \quad x = 0, 1, \dots, m_i.$$

Suppose further that θ has prior density $f(\theta) \propto \theta^{\alpha-1}(1-\theta)^{\beta-1}$, $0 < \theta < 1$, for known positive α and β . Suppose that the numbers of claims x_1, \ldots, x_k in years 1 to k are observed and let $\mu(\theta) = \mathbb{E}(X_{k+1} | \theta)$.

Find the Bayesian estimate $\mathbb{E}(\mu(\theta) \mid X_1 = x_1, \ldots, X_k = x_k)$ of the expected number of claims in year k + 1 under quadratic loss. Show that this estimate can be written as a credibility estimate, and write down the credibility factor Z. Discuss the behaviour of Z if

- (a) k becomes large (with α and β fixed);
- (b) α and β increase in such a way that $\alpha/(\alpha+\beta)$ remains constant (and k is fixed).

[Hint: If Y has density proportional to $y^{\alpha-1}(1-y)^{\beta-1}$, 0 < y < 1, then $\mathbb{E}(Y) = \frac{\alpha}{\alpha+\beta}$ and $\operatorname{var}(Y) = \frac{\alpha\beta}{(\alpha+\beta+1)(\alpha+\beta)^2}$.]

END OF PAPER

Paper 43