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1 In a portfolio of motor insurance policies, the claim sizes X1, X2 . . ., are independent
identically distributed random variables, independent of the number N of claims in one
month. Show that the expected total amount S claimed in one month is ENE(X1),
and show that the moment generating function MS(t) = E[eSt] of S satisfies MS(t) =
GN [MX1(t)], where GN (z) = E[zN ] is the probability generating function of N and MX1(t)
is the moment generating function of X1.

Find ES if X1 is exponentially distributed with mean µ and P(N = k) = qkp,
k = 0, 1, 2, . . ., where 0 < p = 1− q < 1. Show carefully that

MS(t) =
p(1− µt)
p− µt

,

and hence that the distribution of S has a mass at zero and a density on (0,∞) given by

fS(x) =
qp

µ
e−px/µ.

The insurer takes out excess-of-loss reinsurance with retention M > 0. Show carefully
that the resulting expected reduction in the insurer’s monthly pay-out on this portfolio is

qµ

p
e−M/µ.

If instead the insurer takes out stop-loss reinsurance, so that the insurer pays T =
min{S, M̃} for some M̃ > 0, determine the value of M̃ that makes the expected reduction
in monthly pay-out the same as for excess-of-loss.

2 The cumulant generating function κX(t) of a random variable X is κX(t) =
loge E(etX) and the jth cumulant of X is κj = κ

(j)
X (0). Show that κ1 is the mean µ

of X, κ2 is the variance of X and κ3 is E[(X − µ)3].

Let S = X1 + . . . + XN where X1, X2, . . . are independent identically distributed
positive random variables and N has a Poisson distribution with mean λ, independently
of the Xi’s. The distribution of S is approximated by that of V = k + Y where Y has
density

fY (y) =
ναyα−1e−νy

Γ(α)
, y > 0 ,

and where k, α and ν are chosen so that the first three cumulants of V match those of S.
Determine equations for k, α and ν in terms of λ and mj = E[Xj

1 ], j = 1, 2, 3.

Describe the normal approximation to the distribution of S, and discuss the ad-
vantages and disadvantages of the normal approximation compared to the approximation
above.
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3 In a classical risk model, claims arrive in a Poisson process rate λ, the relative safety
loading is ρ > 0, and the claim sizes X1, X2, . . . are independent, identically distributed
positive random variables with mean µ, density f(x) and moment generating function
M(r). Assume there exists r∞, 0 < r∞ 6 ∞, such that M(r) ↑ ∞ as r ↑ r∞. Show that
there exists a unique positive solution R to

M(r)− 1 = (1 + ρ)µ r.

By expanding the exponential term in the definition of M(r) as far as the quadratic term,
show that an upper bound for R is r1 = 2ρµ

E(X2
1 )

. Show that there is another upper bound
r2 for R satisfying

E(X3
1 )r2

2 + 3E(X2
1 )r2 − 6ρµ = 0.

Show that r2 < r1.

Find R, r1 and r2 when f(x) = αe−αx, x > 0.

4 Write a short paragraph explaining the terms credibility estimate, credibility factor
and Bayesian credibility.

The number of claims on a particular risk for n years are X1, . . . , Xn where, given
θ, X1, . . . , Xn are independent with a Poisson distribution with mean θ.

(i) If θ has prior density λ2θe−λθ, find the posterior estimate E(Xn+1|x) of the
number of claims in the following year given X = (X1, . . . , Xn) = x = (x1, . . . , xn), and
show that it can be written as a credibility estimate.

(ii) If instead θ has prior density π(θ) and Sn = X1 + . . . + Xn, show that

P(Sn = s) =
∫

e−nθ(nθ)s

s!
π(θ) dθ, s = 0, 1, . . .

Given a total of s claims in years 1 to n, show that the posterior estimate of Xn+1 is

(s + 1)P(Sn = s + 1)
nP(Sn = s)

. (∗)

(iii) If π(θ) = λ2θe−λθ, find the distribution of Sn and evaluate (∗). Compare your
answer to the estimate you obtained in (i).
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